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A Minimally Supervised Approach for Medical Image Quality 
Assessment in Domain Shift Settings

 The Need

o Accurate, precise disease diagnosis requires objective image 
quality assessment (IQA) 

o Automated IQA can identify the need for reacquisition, save 
time and resources, and enhance screening and diagnosis 
workflows.

 Challenges

o Data and label scarcity. 
o Difficult to obtain large datasets with varying quality levels 

to develop IQA approaches
o Due to dependence of image quality on acquisition setting, 

need data from different sites for generalizable approaches
o Deep learning approaches need dedicated quality labels 

(independent of abnormality itself) from domain experts

o Class imbalance, noise and artifacts and domain shift. Clinical 
image datasets exhibit noise/artifacts; class imbalance, and 
significant domain shifts across acquisition sites. 

Background and Challenges Our Proposed Method

• Minimally-supervised image quality
assessment (MIQA) approach that learns
effectively with small datasets and limited
labels in domain shift (DS) scenarios.

• Formulate as anomaly detection task: there
is severe class-imbalance (small proportion
of images with “unacceptable quality”).

• Mitigate DS using a small number of
labeled target domain images to identify a
compact subset of source domain data
with acceptable quality; and use this
compact set to train a one-class classifier
for IQA.

Experimental Evaluation—Dataset, Performance Comparison Experimental Evaluation—Performance Comparison

Summary

 We presented a Minimally-supervised Image Quality Assessment (MIQA) method for medical images.

 MIQA uses an anomaly detection framework to collectively address data and label scarcity, class imbalance, and domain

shift across acquisition sites.

 MIQA employs a small target validation dataset to improve representation of features pertaining to images of acceptable

quality, and then leverages a one-class classifier to detect images of poor quality.

 In experiments on multi-center medical image quality datasets, we demonstrate large performance gains over existing

supervised and semi-supervised baselines.

 Our work has implications as a tool for improved image quality audit in many clinical settings and AI deployment

applications.

• Real-world multi-center dataset: Retinopathy Of Prematurity 
image quality (ROP-Quality) [Imaging and Informatics in ROP 
study (Coyner et al.’18&19)] 

• Labeled for diagnostic quality: “Acceptable/Possibly 
Acceptable/Not Acceptable Quality (AQ/PAQ/NAQ)”: consensus 
rating by 3 annotators. 

• 5 sites with 443, 609, 1305, 1475 and 1977 posterior view 
images 20 site pairs

• Public Diabetic Retinopathy image quality dataset (DR-Quality)
• 28,292 DR images,  re-annotated with labels of “Good”, “Usable”, and “Reject”. 
• Simulate scenarios for small imbalanced datasets, and varying degrees of data 

and label scarcity. 
• Generate 10 splits with 400 to 2500 images each via stratified random sampling.

Dataset

 Designate “Reject” (prevalence 18-21% for DR-Quality) , and “NAQ” (prevalence 1.7-
11% for ROP-Quality) classes as  the target  anomalies for detection.
 Randomly sample 3% of the data (i.e., 12-75 images) from target domain while 
maintaining class proportions for labeling.
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Domain Shift in ROP-Quality Dataset

Demographic, socioeconomic, technical and clinical differences (race, 
ethnicity, birthweight, technical acquisition skills) translate to 
differences in image features/quality levels across sites 

Exemplar ROP images from different acquisition sites 
Significant image quality variations across sites

 Empirically quantify degree of domain shift by training a CNN 
classifier to predict domain class label (classification accuracy 
related to H-divergence (Ganin et al. JMLR 2016)).

 Across 20 site pairs, the mean classification accuracy was 
91.08±4.35% significant domain shift amongst acquisition sites.

Dataset Method Auroc (%) Auprc (%) Gain Over Baseline

Auroc (%) Auprc (%)

DR-
Quality

MIQA 90.66±1.14 75.00±2.70 

TFSm 85.27±1.83 62.73± 4.43 +5.39 +12.27

SupV3 93.28±1.30 53.26± 5.08 -2.62 +21.74

CSP 88.50±2.98 70.81± 5.90  +2.16 +4.19

ROP-
Quality

MIQA 74.37±8.83 22.08± 16.17

TFSm 72.93±7.15 19.62± 16.10 +1.44 +2.46

SupV3 70.13±8.10 17.38± 8.23 +4.24 +4.70

CSP 65.20±6.58 12.08± 8.45 +9.17 +10.00 

MIQA far more effective in detecting poor quality images (anomalies)
• DR-Quality: MIQA adapts well to the data scarcity, class imbalance and data 

variation. 
• ROP-Quality: MIQA offers substantial gains across different source-target site 

pairs.

Average Performance Across Multiple Splits and Source-Target Pairs

Performance Comparison
The performance of MIQA is good even for the real-world 
multi-center ROP-Quality dataset which exhibits more serious 
domain shift, site-to-site variation, and class imbalance -> 
utility in practical settings
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MIQA typically adapts the selected layers/ feature
representations to nature of target data.
Prioritizes lower visual layers when target
domain has more data; and higher semantic
layers when data in target domain more scarce.

Selected 
Layer

Site Pairs Selected Layer Site 
Pairs

Mixed_6a 20, 23, 12,
10, 32, 31,
42, 41

PreAuxLogits 30, 
40

MaxPool_5a
_3x3

21, 13,
01, 34

Conv2d_2a_3x3 14

Mixed_5b 24, 03, Conv2d_2b_3x3 02

04 Conv2d_3b_1x1 43

Selected Layers for Different Site Pairs: 
ROP-Quality Data

TFSM--Transfer Forest with feature selection based on small validation data.  
SupV3 and CSP—Supervised baselines based on Inception V3 & Color Space.
MIQA -- Minimally-supervised Image Quality Assessment (proposed)
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Methods Key Techniques Limitations

Conventional IQA 
methods for retinal 
images (Pires Dias et 
al.‘14)

Employ generic parameters 
and structural parameters

The heavy reliance on 
identification of anatomical 
landmarks limits 
applicability

Deep neural network -
based methods (Costa et 
al. ’17, Coyner et 
al.’18&19, Fu et al.’19)

Extract multi-level features and transfer 
knowledge to target tasks. Integrates 
representations of different color-space. 
Pool the patch classification results

Need large amount of 
annotated data with 
varying quality labels

Conventional domain 
adaptation methods (Lee 
et al.’19, Morerio et 
al.’18, Shen et al.’20)

Leverages adversarial dropout, align
source and target by geodesic alignment
for correlation. Detect optic disc and
fovea to assist coarse-to-fine feature
encoding

Not perform well for small
medical dataset with
significant quality variations
and distribution shift

SOTA-IQA Methods
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