

NVC-Net: End-to-End Adversarial Voice Conversion

Bac Nguyen^{*}, Fabien Cardinaux Sony Europe B.V., R&D Center, Stuttgart Laboratory 1, Germany

Problem definition



Transform a recording:

- Converting **non-linguistic information** (speaker identity)
- Preserving **linguistic information** (content)

SONY SONY R&D Center Europe 3

Why voice conversion?

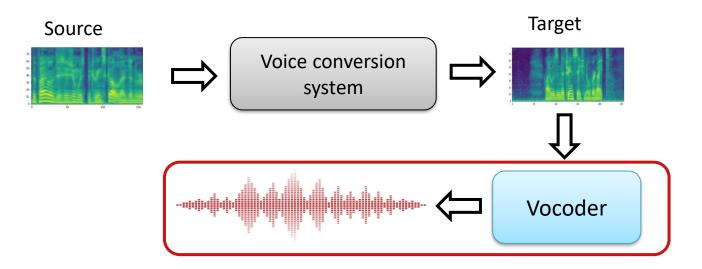
- Speaker-identity modification
 - Voice dubbings for movies
 - Pronunciation conversion
- Personalized Text-to-Speech systems
 - Provide a simple solution
 - The same sentence said by different people has different effect
- Entertainment
 - Gamming: avatar voices
 - Singing voice conversion

VC Challenge: Non-parallel training data

- Parallel training data
 - Very sensitive to misalignment
 - Expensive to collect

- Non-parallel training data
 - Easy to collect
 - Difficult to deal with non-parallel data

VC Challenge: Vocoder dependence

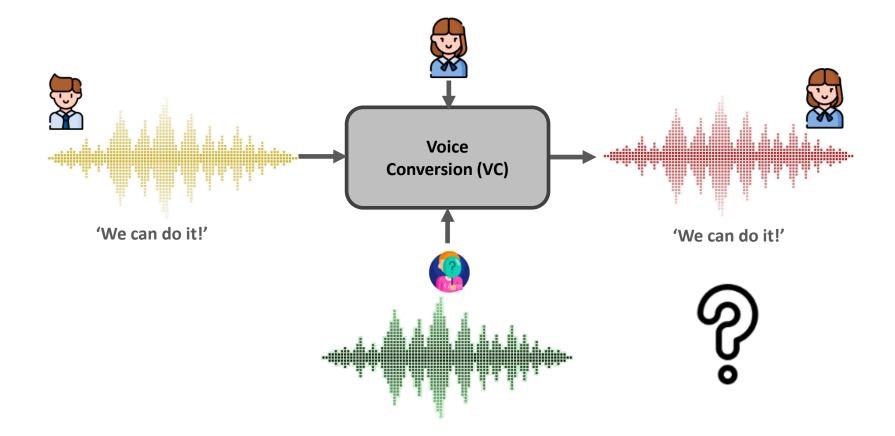


> Most of VC systems rely on a vocoder to produce audio waveforms

- Slow at inference time
- Quality of audio is vocoder-dependent
- Feature mismatch problem when training data are limited

VC Challenge: Zero-shot voice conversion

Perform VC from/to speakers that are unseen during training



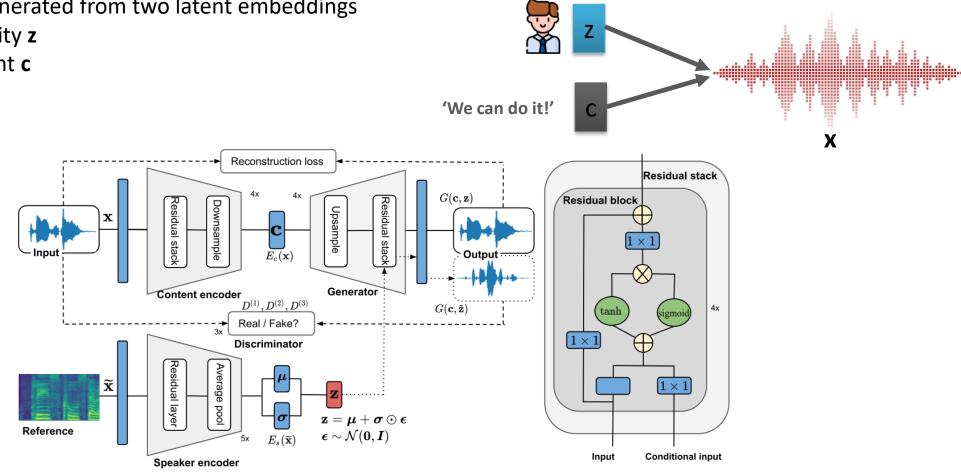
NVC-Net: End-to-end adversarial voice conversion

Contributions

- NVC-Net can directly generate raw audio without vocoder
- NVC-Net is very fast at inference
- NVC-Net supports zero-shot voice conversion

NVC-Net: Network architecture

- > An utterance **x** is generated from two latent embeddings
 - Speaker identity z
 - Speech content **c**

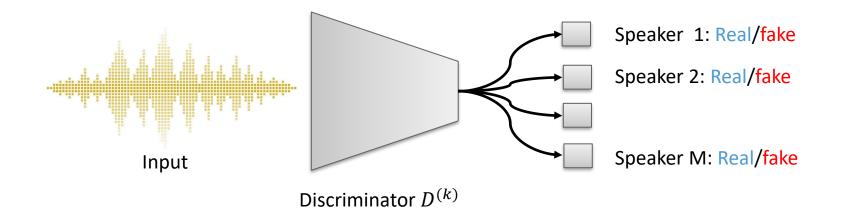


How to disentangle the speaker identity from the speech content?

NVC-Net: Objective functions (I)

Generating high-fidelity audio for a target speaker

$$\mathcal{L}_{adv}(D^{(k)}) = -\mathbb{E}_{\mathbf{x},y} \left[\log D^{(k)}(\mathbf{x})[y] \right] - \mathbb{E}_{\mathbf{c},\widetilde{\mathbf{z}},\widetilde{y}} \left[\log \left(1 - D^{(k)}(G(\mathbf{c},\widetilde{\mathbf{z}}))[\widetilde{y}] \right) \right],$$
$$\mathcal{L}_{adv}(E_c, E_s, G) = \sum_{k=1}^{3} \mathbb{E}_{\mathbf{c},\widetilde{\mathbf{z}},\widetilde{y}} \left[\log \left(1 - D^{(k)}(G(\mathbf{c},\widetilde{\mathbf{z}}))[\widetilde{y}] \right) \right].$$



SONY & SL1 R&D Center Europe 12

NVC-Net: Objective functions (II)

> Reconstructing highly-perceptually-similar audio waveform from latent embeddings

• Feature matching loss

$$\mathcal{L}_{\mathrm{fm}}^{(k)}(E_c, E_s, G) = \mathbb{E}_{\mathbf{c}, \mathbf{z}, \mathbf{x}} \left[\sum_{i=1}^{L} \frac{1}{N_i} \left\| D_i^{(k)}(\mathbf{x}) - D_i^{(k)} (G(\mathbf{c}, \mathbf{z})) \right\|_1 \right]$$

• Spectral loss

$$\mathcal{L}_{\text{spe}}^{(w)}(E_c, E_s, G) = \mathbb{E}_{\mathbf{c}, \mathbf{z}, \mathbf{x}} \left[\left\| \theta(\mathbf{x}, w) - \theta \left(G(\mathbf{c}, \mathbf{z}), w \right) \right\|_2^2 \right]$$

NVC-Net: Objective functions (III)

> Preserving the speaker-invariant information during the conversion

• Converted utterance preserves the speaker-invariant characteristics of its input audio

$$\mathcal{L}_{\text{con}}(E_c, G) = \mathbb{E}_{\mathbf{x}, \widetilde{\mathbf{z}}} \left[\left\| E_c(\mathbf{x}) - E_c(G(E_c(\mathbf{x}), \widetilde{\mathbf{z}})) \right\|_2^2 \right]$$

> There are two benefits:

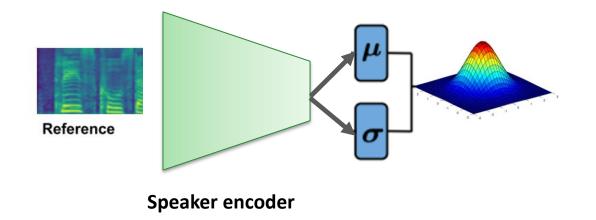
- This allows cycle conversion
- Disentangling the speaker identity from the speech content

NVC-Net: Objective functions (IV)

Perform stochastic sampling from the speaker latent space

• Penalize the deviation of the speaker output distribution from a prior Gaussian

$$\mathcal{L}_{kl}(E_s) = \mathbb{E}_{\mathbf{x}} \left[\mathbb{D}_{KL} \left(p(\mathbf{z}|\mathbf{x}) \| \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I}) \right) \right]$$



Two ways to sample a speaker emebedding:

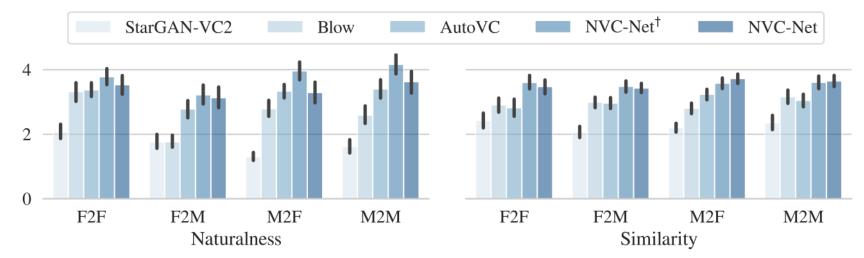
- from the prior distribution N(z|0; I)
- from p(z/x) for a reference utterance x

Results: Objective evaluations

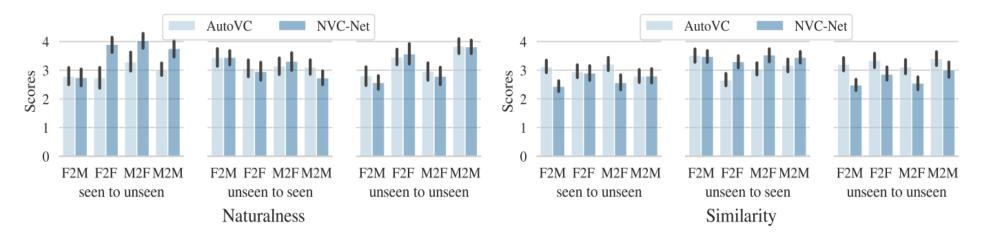
- Spoofing (% of correctly classified)
 - The classifier is an Melspectrogram-based convolutional classifier
 - The classifier reaches 99% of accuracy on real speech
 - Training set: 37,508 samples
 - Test set: 4,235 samples

Table 1: Spoofing evaluations of the competing methods							
Model	StarGAN-VC2	AutoVC	Blow	$NVC-Net^{\dagger}$	NVC-Net		
Spoofing	19.08	82.46	89.39	96.43	93.66		

Results: Subjective evaluation



Subjective evaluation for traditional VC settings with 95% confidence intervals



Subjective evaluation for zero-shot VC settings with 95% confidence intervals

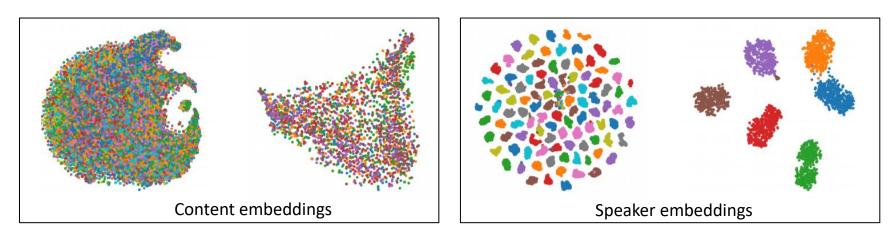
Results: Ablation studies

Speaker identification accuracy

Model	Content S	Speaker
NVC-Net [†]	19.21	N/A
NVC-Net	24.15	99.22

Model size and inference speed comparisons

	Less memory footprint	Very fast on GPU	Close to real time on CPU
NVC-Net	15.13	3661.65	7.49
Blow	62.11	441.11	2.43
AutoVC*	28.42	0.11	0.04
StarGAN-VC2*	9.62	60.47	35.47
Model	-	Inference speed I GPU (in kHz)	-



Barnes-Hut t-SNE visualization

Demo: https://nvcnet.github.io/

Scan QR code for the code and demo page

SONY is a registered trademark of Sony Corporation.

Names of Sony products and services are the registered trademarks and/or trademarks of Sony Corporation or its Group companies. Other company names and product names are registered trademarks and/or trademarks of the respective companies.