SleepGAN: Towards Personalized Sleep Therapy Music

Jing Yang ^{1*}, Chulhong Min ², Akhil Mathur ², Fahim Kawsar ²

¹ Department of Computer Science, ETH Zurich, Switzerland ² Nokia Bell Labs, Cambridge, UK

 st This work was done at Nokia Bell Labs during the author's internship

Cognitive behaviour therapy

Pharmaceutical sleep aids

Expensive Inconvenient Expert guidance Potential harmful side-effects

Alternative non-invasive, low-cost, and enjoyable solutions to sleep therapy

[1] Trahan et al., "The music that helps people sleep and the reasons they believe it works: A mixed methods analysis of online survey reports", 2018 [2] CDC declares sleep disorders a public health epidemic

Music Therapy

Convenient and enjoyable

Proven effects in clinical studies

Little scalability (e.g. Oura ring app, 8 soundscapes)

Limits a mass adoption of sleep music apps

Music fatigue

Rarely consider individual music preference

Personalized sleep music: Automatically bring therapeutic properties into arbitrary user-preferred music

Challenges

Why so difficult to generate personalized sleep music?

RQ1: What musical features contribute the therapeutic effects of sleep music?

RQ2: How to bring such therapeutic sleep features into user-selected music?

Overview of Our Approach

Musical Feature Analysis

Other music styles (e.g. jazz, pop, metal)

 $V_{musical} = [f_1, f_2, \dots, f_{33}, f_{34}]$

Adjusted Rand Score (ARS):

Clustering accuracy

Understanding of therapeutic effects

	ARS
All 34 musical features	0.115
Only articulation and energy features	-0.063
Only MFCC features	0.096
Only rhythm features	0.112
Only spectral rolloff features	0.761
Only spectral flatness features	0.037

Bass, treble, overall pitch profile

$$\boldsymbol{w} = [w_1, w_2, \dots, w_{33}, w_{34}]$$

Therapeutic Style Transfer

$$L_{GAN} + L_{cycle} + L_{id} + L_{musical}$$

$$L_{musical} = f(V_{musical} \times \vec{w})$$
$$V_{musical} = [f_1, f_2, \dots, f_{33}, f_{34}]$$

Therapeutic Style Transfer: Evaluation

Therapeutic Style Transfer: Evaluation

Subjective evaluation with 11 participants (2 female, 9 male)

More studies to explore the musicality and clinical effects

SleepGAN: Towards Personalized Sleep Therapy Music

Take-aways:

T1: Bass, treble, and overall pitch profile of music

T2: Music style transfer for creating personal therapy music

Future work:

Thank You

SleepGAN: Towards Personalized Sleep Therapy Music

Chulhong Min²

Akhil Mathur²

Fahim Kawsar²

¹ Department of Computer Science, ETH Zurich, Switzerland ² Nokia Bell Labs, Cambridge, UK

