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Overview

@ Brain connectivity measures and non-linear connectivity analysis.

@ Architecture and formulation of the Component-wise Multi-Layer
Perceptrons(cMLPs) and their use.

@ Modifications to include frequency band specific connectivity estimates
and dealing with non-stationarity.

@ Simulations to showcase the utility of proposed NLGC and Spec NLGC
methods.

@ Implementing proposed method to an EEG time series data recorded
during an epileptic seizure.

@ Conclusion and future research prospects.
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Brain Connectivity Measures

@ Brain connectivity network dynamics is key to understanding many

complex neuronal processes.
Brain Connectivity
Measures

Functional Connectivity
(Temporal correlation)

Model based methods
(VAR, PDC)

Effective Connectivity Model free methods
(Lead-lag effect between ¥ > (Transfer entropy, directed
different channels) information)

@ Model-based measures used in current studies mostly assume linear
directed connections between the channels.

@ Granger causality (GC) is a powerful measure that is used frequently to
analyze effective connectivity in multi-channel brain signals.

@ GC is often implemented in context of VAR models, which assumes that
underlying connections are linear.
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Non-Linear Connectivity Analysis

e Kernel based methods: In some studies, GC has been implemented
using kernel functions to get non-linear GC estimates.

@ Our Method: We propose NLGC and Spec NLGC models which utilizes
component-wise MLPs to get non-linear GC connection estimates.

@ Past studies have shown the utility of MLPs in time-series forecasting.
But, due to black-box nature of MLPs, it is hard to use them for directed
connectivity estimation.

@ Solution: Use component-wise MLPs(i.e. ctMLP), which is using one
MLP for every channel of the data
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Component-Wise Multi-Layer Perceptrons

@ A generalization of the classical VAR(K) model would be to model the
current values X(t) using past values Xi(t'), Xa(t'), ..., Xn(t') using some
non-linear function g(.) such that:

X(t) = g(Xa(t), Xao(t), ..., Xn(t)) + €(t)

@ g(.) is model using MLPs. We model each channel separately, i.e. using
cMLPs to get a interpretable architecture:

Xi(t) = gi(Xw(t), Xa(t), ..., Xn(t)) + €i(t)
@ To implement each g;(.), we implement cMLPs of single hidden layer
h(t) € R” with H neurons:

K
Hidden layer : h'(t) = o Z W X(t — n) + b*
n=1

Output layer : Xi(t) = W2h'(t) + b*
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cMLP Architecture Comparisons

Traditional Approach: Joint Network 9ifxa()x2(), XN ()} Gibxa(t).xa(C).. xn ()}
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Frequency Band specific Connections

@ Past studies have shown the

Wm existence of frequency specific
connections in modalities like

Non-linear Method EEG , L FP' fMRI.

Linear Method

Normalize each
channel of the Time
Series data

@ We utilize a 3rd order Butterworth
filter to decompose each channel
of EEG signal into delta(0.5-4.0
Hz), theta(4.0-8.0 Hz),
alpha(8.0-12.0 Hz), beta(12.0-30.0
Hz), gamma(30.0-50.0 Hz)

Filtering the signal
into tradiftional
frequency bands

Use VAR-LASSLE to
getthe VAR
coefficients

Calculate PDC from
VAR coeficients for
traditional frequency
bands

Normalize
and use
cMLP

Normalize
and use
cMLP

Final frequency band specific non-linear directed
connections
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o Effectively this gives us a total of
5 time-series data for each of the
channels.

Final frequency band
specific linear directed
connections



L

Dealing with Non-Stationarity

Recorded for channel 8
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@ Non-stationary behaviour in neuronal time-series data can occur for many
reasons, and there are many sophisticated methods to deal with it.

@ For our case, we have just simply used a over-lapped time window
approach.

@ The time window/block size is to be selected with caution, considering
the trade-off between small windows leading to better time-resolution and
poorer cMLP training and vice-versa.
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Experiments Overview

@ Non-linear mixtures of AR(2) processes are used for the simulations. This
gives us the ground truth to evaluate our scheme.

@ To check performance under noisy conditions, the noise levels of the
signals are varied using AWGN of SNR: {2 dB,5 dB,10 dB,15 dB,20 dB}.

@ For all the simulations and implementation on seizure EEG data, a single
hidden layer neural-network is chosen, with number of neurons in hidden
layer = H = 100.

@ The cMLPs are trained using the hierarchical penalty and proximal
gradient descent with a line search is used for training the networks.

@ The mean and the median absolute deviations for the AUPR scores for 5
random realizations of each of the setting is reported.
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Overall Non-Linear GC Connectivity

@ The simulations for the overall NLGC are done in order to get the idea of
what effect the SNR has on the proposed NLGC performance

@ N = 10 channels non-linear data is generate using 2 sets of AR(2) latent
sources

@ The non-linearity is induced using a transfer function of the form
7(x) = a + bx?

@ The ground truth is set such that there are a total of 18 true connections
among the 90 possible total connections
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Frequency Specific NLGC Connectivity

@ The ground truth is generated in a similar manner to that of the NLGC,
using a different non-linear transfer function 7(x)

@ N = 5 channels were used in the simulations, which can be decomposed
into 5 bands each, leading to a total of 25 decomposed signals.

@ 6 actual connections were used in the ground truth data, the figure below
explains the true connectivity patterns:

10 10 10 10 10
For delta band For theta band For alpha band For beta band For gamma band

: : . : :
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Visualizing the Individual AR(2) Processes
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Figure: Latent sources from AR(2) processes
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Table Showing the Simulation Results

Method ‘ 2dB 5dB 10 dB 15 dB 20 dB
VAR-LASSLE(1) | 0.42+ 0.01 0.42+0.02 0.41+0.01 0.41+0.01 0.41+0.01
NLGC(1) 0.62+ 0.03 0.72+ 0.05 0.84+ 0.02 0.82+0.02 0.8+ 0.03
PDC(1) 0.26+ 0.03  0.23£ 0.00 0.25+ 0.03 023+ 0 0.24+ 0
Spec NLGC(1) 0.79+ 0.02 0.82£0.01 0.9+£0.01 0.91£0.02 0.81+ 0.02
VAR-LASSLE(2) | 0.41+ 0.03 0.41+0.02 0.414+0.01 0.424+ 0.03 0.44+ 0.02
NLGC(2) 0.45+ 0.03 0.45+ 0.06 0.71+0.05 0.87£0.02 0.9£ 0.05
PDC(2) 0.32+ 0.03 0.26+ 0.05 0.24+ 0.06 0.14+ 0.03 0.11+0
Spec NLGC(2) | 0.63+ 0.035 0.684+ 0.07 0.8+ 0.02 0.9+ 0.03 0.92+ 0.03
VAR-LASSLE(3) | 0.4+ 0.02 0.4+ 0.03 0.44+ 0.02 0.43£0.02 0.43+£ 0.02
NLGC(3) 0.36+ 0.06 0.42+ 0.03 0.75+ 0.04 0.88+ 0.03 0.93+£ 0.00
PDC(3) 0.26+ 0.05 0.27£ 0.05 0.29+ 0.03 0.17£0.04 0.28+ 0.10
Spec NLGC(3) 0.65+ 0.07 0.74£ 0.06 0.91+ 0.03 0.98+£ 0.01 0.99+£ 0.00
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Analysis of Seizure EEG Data

@ We apply the NLGC and Spec NLGC method on a 18-channel seizure
EEG data with 50,000 time-points, having a sample rate of 100 Hz.

@ We used a time-windowed approach considering the quasi-static nature of
EEG signals using a 50% overlap and 2000 time samples in each window.

@ This gives 500 time-points overlap on each side of the tie window, leading
to a total of 33 GC matrices over the 500 second recording.

@ In order to understand the network dynamics and visualize the amount of
change in the GC connectivity network, we plotted the Euclidean
Distance(ED(t)) between consecutive GC matrices:

ED(t)= [ > [16C(t)]i; —[6C(t = 1))y |2

all ij
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Comparison for Overall Connections

Plot of Consecutive Dissimilarity for NLGC Connec tions Plot of Consecutive Dissimilarity for VAR-LASSLE Connect tions
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Figure: Comparison between NLGC and VAR-LASSLE

@ Consecutive dissimilarity between directed connectivity is plotted using
NLGC and traditional VAR-LASSLE, with model lags of K = 1,2,3.

@ The sudden rise of the consecutive dissimilarity of NLGC method suggests
that our method is able to detect the start of the seizure quite well.

@ This is not true for the case of VAR method where the rise in consecutive
dissimilarity not much appreciable.
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Visualizing the Estimated NLGC Connections
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Figure: Propagation of NLGC connections from left to right hemisphere during seizure
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Comparison for Frequency Specific Connections

Plot of Consecutive Dissimilarity for Spec NLGC Connections Plot of Consecutive Dissimilarity for VAR-LASSLE PDC Connections
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Figure: Comparison between Spec NLGC and PDC

@ Consecutive dissimilarity between directed connectivity in each frequency
band is plotted using Spec NLGC and traditional VAR-LASSLE based
PDC, with model lag of K = 1.

@ In Spec NLGC, sudden change occurs mostly in the theta, beta and
gamma bands. This is consistent with past studies.

@ In case of VAR-LASSLE based PDC, we observe sudden change in lower
frequency bands which is inconsistent with past studies.
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Conclusion and Future Work

@ We have introduced and evaluated performance of a frequency band
specific non-linear Granger causality framework combining Butterworth
filters and component-wise MLP networks with hierarchical penalty.

@ Simulation results on non-linear data shows the huge improvement on use
of proposed methods over traditional methods.

@ Implementation on epileptic EEG data provides novel findings about time
evolving connectivity pattern between different EEG channels.

@ Integration of Spec NLGC with sophisticated approaches to deal with
non-stationarity can be explored in future studies.

@ We have deployed simulations settings as per need in brain signal analysis,
but implementation of the method proposed in fields like financial data
analysis would also be worth exploring.
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The End



