Text Adaptive Detection For Customizable Keyword Spotting

Yu Xi¹, Tian Tan², Wangyou Zhang¹, Baochen Yang¹, Kai Yu¹

¹Shanghai Jiao Tong University ²AlSpeech Ltd, Suzhou China

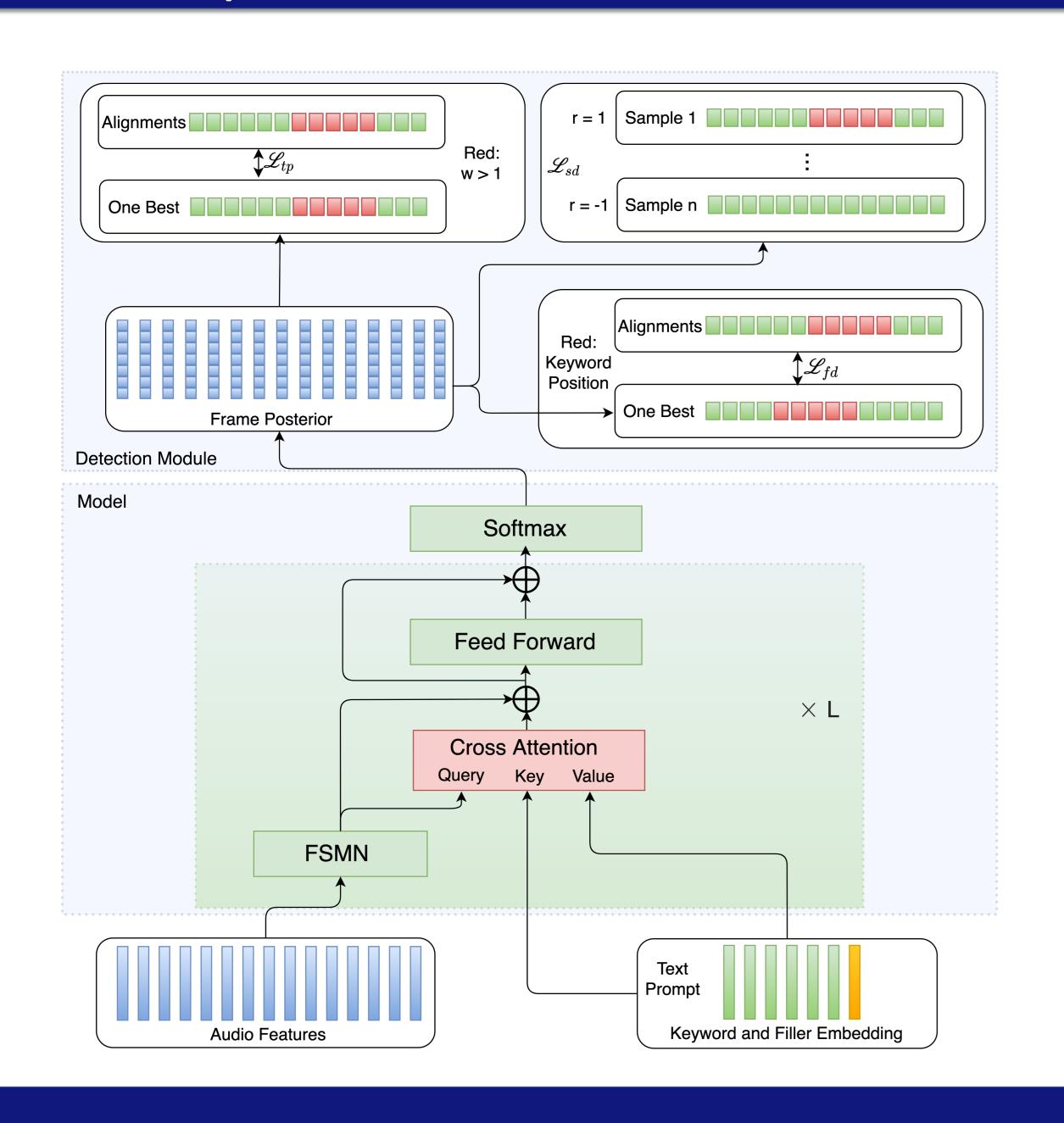
Highlights

- Text adaptive detection framework
- Customize arbitrary wake words
- Address the loss-metric mismatch
- 16.88% relative improvement of F1-score

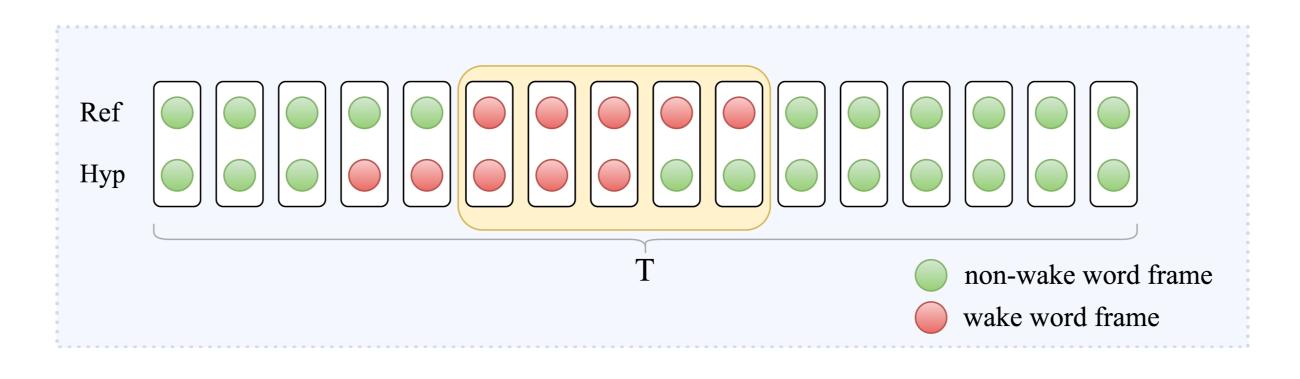
Always-on keyword spotting

- Wake word detection
- Wake up smart devices via predefined keywords
- OK Google
- Hey Siri
- Alexa

Text Adaptive Detection Framework



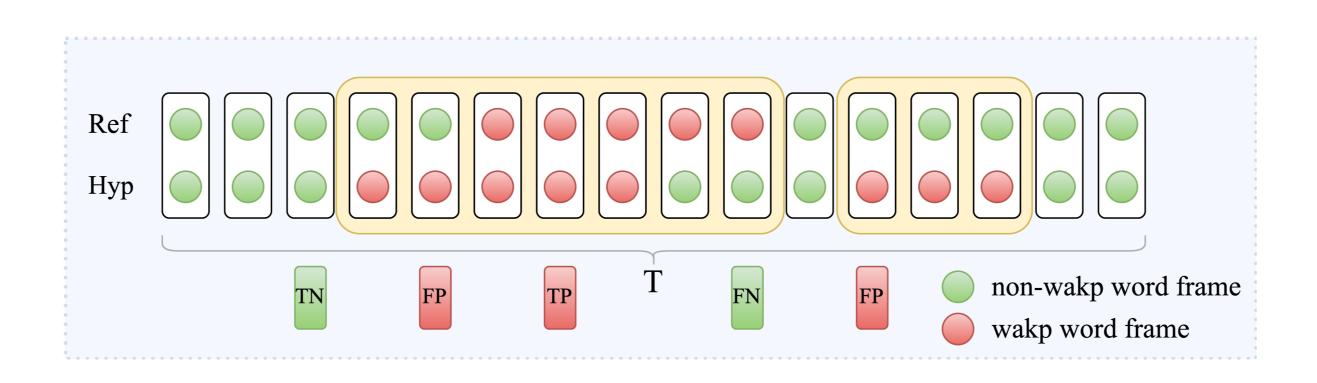
Modified Weighted Cross-entropy Loss



$$\mathcal{L}_{tp} = -\left(w\sum_{t\in W}\log p_t + \sum_{t\notin W}\log p_t\right)$$

- A weight W > 1 applied to wake word frames
- W = 1, the loss degenerate to the standard CE

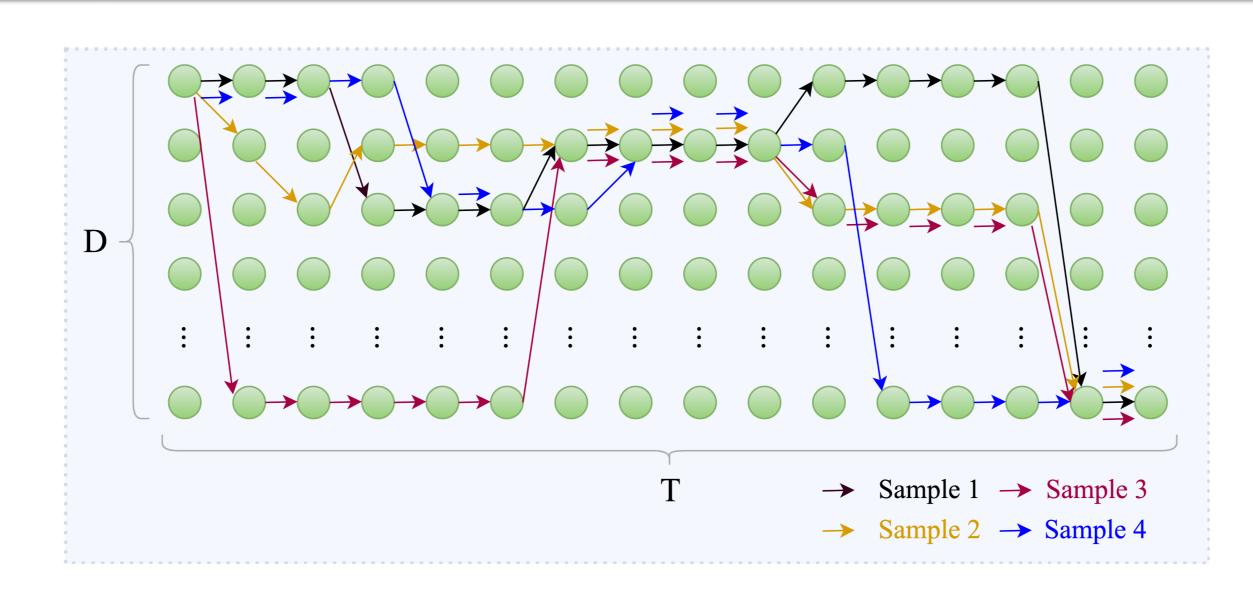
Frame-level Detection Loss



$$\mathcal{L}_{fd} = -\left(\sum_{t \in \{TP, TN, FN\}} \log p_t^l + \sum_{t \in \{FP\}} \log (1 - p_t^o)\right)$$

• Treat each frame as a binary classification(detection) problem

Sequence-level Detection Loss



• Detect whether the keyword appears in the hypothetical samples

Experimental Setups

- Dataset
- WSJ (a keyword spotting version of WSJ)
- Positive test dataset
- The keyword must appear at least five times in WSJ test dataset
- The keyword is not polyphonic.
- Negative test dataset
- Choose 20 utterances that do not contain any of the keywords.
- Test metric
- Micro f1-score

Results

Model	#Param. (#MACs)	Dataset		
		Dev93	Ev92	Ev93
Baseline	270K (8.47M)	0.692	0.762	0.844
Larger Baseline	4000K (122.82M)	0.780	0.825	0.883
Text Prompt ($\mathcal{L}_{tp}, w = 15$)	268K (7.64M)	0.794	0.890	0.898
+ Frame level (\mathcal{L}_{tp} , \mathcal{L}_{fd})		0.805	0.887	0.910
+ Sequence level $(\mathcal{L}_{tp}, \mathcal{L}_{sd})$		0.832	0.901	0.912
+ Frame + Sequence $(\mathcal{L}_{tp}, \mathcal{L}_{fd}, \mathcal{L}_{sd})$		0.850	0.909	0.917

- Compared with baseline:
 - Achieves a relative improvement of 22.83%, 19.22%, and 8.59% on dev93, ev92, and ev93 with less parameters and lower computational cost.
- Compared with larger baseline:
 - Still get a relative improvement of 9.03%, 10.14%, 3.85%.

Summary

- Proposed a text adaptive detection framework for always-on keyword spotting task.
- Our method outperforms the baseline by a significant margin for the comparable model size.