Accurate Carrier Frequency Offset Estimation in Time-Reversal Communications

Chen Chen, Hung-Quoc Lai, Yan Chen, K. J. Ray Liu

University of Maryland, College Park

cc8834@umd.edu

December 13, 2015

Chen Chen, Hung-Quoc Lai, Yan Chen, K. J. CFO Estimation in TR Communications

Outline

Introduction

- Introduction to Carrier Frequency Offset (CFO) and CFO Estimators
- Introduction to Time-Reversal (TR) Communications
- 2 System Model
 - Signal Model in TR Channel Probing Phase with CFO
 - Signal Model in TR Data Transmission Phase with CFO
- Proposed CFO Estimators
- Performance Analysis
- 5 Experiment Results
 - Conclusion

Introduction to Carrier Frequency Offset (CFO)

- CFO exists due to the misalignment between the oscillators at the transmitter (TX) and receiver (RX) for up-conversion and down-conversion respectively.
- CFO introduces a linear phase shift in proportional to time, which degrades the performance of decoding phase-modulated symbols.

Most methods in literature use (a) cyclic prefix (b) training sequence to obtain an estimated CFO.

Potential Problems in CFO Estimators

- Training sequence has to be very long for wideband transmissions as it requires highly accurate CFO estimation.
- The performance using cyclic prefix could be not good enough since the cyclic prefix cannot be reused.
- The phase wrapping might occur due to inappropriate choice of parameters

Introduction to Time-Reversal (TR) Communications

The TR communication is based upon two observations:

- Reciprocity The channel impulse response (CIR) between the forward and backward link are highly correlated.
- Stationarity The CIR remains highly correlated for at least one cycle of TR transmission.

Introduction to TR Communications, Cont.

One cycle of TR transmission consists of two phases

Channel Probing (CP) Terminal device (TD) sends a Golay sequence to the access point (AP) to facilitate CIR estimation. AP generates the *TR signature g*.

Data Transmission (DT) AP convolves the transmitted signal with g and sends to the receiver. The receiver detects the correct symbol timing, performs CFO estimation and compensation, then decodes the symbols using a Viterbi decoder.

Signal model for CP Phase

$$Y_{CP}[k] = (G * h)[k] \exp(j2\pi\Delta fT_s\psi k) + n_{CP}[k],$$

where $\{h[\ell]\}_{\ell=0,1,\cdots,L-1}$ is the CIR between the AP and the TD, $\Delta f = f_{AP} - f_{TD}$ is the CFO, i.e., the difference between the LO frequencies at the TD and that at the AP, T_s is the sampling interval before decimation, ψ is the upsampling ratio, and $n_{CP}[k] \sim C\mathcal{N}(0, \sigma^2)$.

CIR Estimation

$$\hat{h}[\ell] = \frac{1}{L_{GS}} \sum_{\ell'=0}^{L-1} h[\ell'] \sum_{m=0}^{L_{GS}-1} G[m] G[\ell + L_{GS} - 1 - \ell' - m] e^{j2\pi\Delta fT_S \psi(\ell + L_{GS} - 1 - m)} + n'[\ell + L_{GS} - 1]$$

$$\approx h[\ell] \exp(j\Delta\omega\psi\ell) \exp(j\theta) + n'[\ell + L_{GS} - 1]$$
(2)

where $n'[k] = \frac{1}{L_{GS}}(G * n)[k]$ is the average of many zero mean Gaussian noises and thus can be ignored. $\Delta \omega = 2\pi \Delta f T_s$ is the normalized CFO, and $\theta = 2\pi \Delta f T_s \psi(L_{GS} - 1)$ is the common phase error in estimating $\hat{h}[\ell]$.

8 / 22

(1)

Signal model for DT Phase

$$Y[k] = S[k] \exp(-j\Delta\omega D\psi k) + n_{DT}[k]$$

$$S[k] = (h * g)[L - 1] \underbrace{X[k - L^*]}_{\text{intended symbol}} + \sum_{\substack{l=0, \\ l \neq L^*}}^{(2L-2)/D} (h * g)[Dl]X[k - l] \quad (3)$$

$$g[k] = \frac{h^*[L - 1 - k] \exp(-j\Delta\omega(L - 1 - k)\psi) \exp(-j\theta)}{\sqrt{\sum_{\ell=0}^{L-1} |h[\ell]|^2}}, \quad (4)$$

where $L^* = (L-1)/D$, X[k] is the transmitted symbols, D is the backoff rate, $n_{DT}[k]$ is the zero-mean complex Gaussian noise with variance σ^2 , and g[k] is the signature. In absence of CFO, $(h * g)(L-1) = \sqrt{\sum_{\ell=0}^{L-1} |h[\ell]|^2}$ which is the *TR focusing gain*.

Proposed CFO Estimators

To estimate CFO, we sandwitch data blocks D_i between pilot blocks P_i and P_{i+1} .

In absence of noise, we have

$$\Phi[k, k+Q] = Y[k]Y^*[k+Q] \propto \exp(\Delta \omega D\psi Q)$$
(5)

Chen Chen, Hung-Quoc Lai, Yan Chen, K. J. CFO Estimation in TR Communications

The proposed estimators are summarized into

$$\widehat{\Delta\omega} = \begin{cases} \frac{\angle \left[\frac{1}{MB}\sum_{i\in\mathbb{B}}\sum_{k\in\mathbb{P}}\Phi[2Qi-2Q+k,2Qi-Q+k]\right]}{Q\psi D}, & \text{AOM-NR} \\ \frac{\sum_{i\in\mathbb{B}}\angle \left[\frac{1}{M}\sum_{k\in\mathbb{P}}\Phi[2Qi-2Q+k,2Qi-Q+k]\right]}{BQ\psi D}, & \text{MOA-NR} \\ \frac{\angle \left[\frac{1}{MB}\sum_{i\in\mathbb{B}'}\sum_{k\in\mathbb{P}}\Phi[Qi-Q+k,Qi+k]\right]}{Q\psi D}, & \text{AOM-R} \\ \frac{\sum_{i\in\mathbb{B}'}\angle \left[\frac{1}{M}\sum_{k\in\mathbb{P}}\Phi[Qi-Q+k,Qi+k]\right]}{BQ\psi D}, & \text{MOA-R} \end{cases}$$
(6)

where \mathbb{B} stands for the set [1, 2, ..., B], \mathbb{B}' for [1, 2, ..., B + 1], **AOM** for Angle-of-Mean, **MOA** for Mean-of-Angle, **R** for reusing, and **NR** for non-reusing. They differ in (i) whether they reuse the same pilot block for estimation (ii) whether they formulate angles then take average, or average Φ then take angle.

December 13, 2015 11 / 22

To avoid phase wrapping, Q should be chosen carefully according to

$$Q < \lambda Q^+ = rac{\lambda \pi}{|\Delta \omega| D \psi}, \lambda \in (0, 1]$$
 (7)

where $\lambda \in (0, 1)$.

Performance Analysis: No Phase Wrapping

$$\operatorname{Bias}(\widehat{\Delta\omega}) \approx 0,$$
 (8)

and the MSE performances are given by

$$MSE(\widehat{\Delta\omega}) = \begin{cases} F\left(\frac{1}{MB}\left[\sigma^{2} + \frac{\sigma^{4}}{2}\right]\right), & AOM-NR\\ F\left(\frac{1}{M}\left[\sigma^{2} + \frac{\sigma^{4}}{2}\right]\right)/B, & MOA-NR\\ F\left(\frac{1}{MB}\left[\frac{\sigma^{2}}{B} + \frac{\sigma^{4}}{2}\right]\right), & AOM-R\\ V(M, \sigma^{2}), & MOA-R \end{cases}$$
(9)

where F(x), V(x, y), U(x, y) are shown as

$$F(x) = \frac{\int_{0}^{\frac{\pi}{2}} \frac{2y^{2}}{\sqrt{2\pi x}} \exp\left(-\frac{\tan^{2}(y)}{2x}\right) \frac{1}{\cos^{2}(y)} dy}{Q^{2}\psi^{2}D^{2}},$$

$$V(x,y) = \frac{F(y)}{B} + \frac{2(B-1)}{B^{2}Q^{2}\psi^{2}D^{2}} U(x,y),$$

$$U(x,y) = \int_{u=-\infty}^{\infty} \int_{v=-\infty}^{\infty} \arctan(u) \arctan(v) \frac{x}{2\pi \left(y + \frac{y^{2}}{2}\right) \sqrt{1 - \frac{1}{(2+y)^{2}}}} \exp\left(-\frac{\left[\frac{x(u^{2}+v^{2} + \frac{2uv}{2+y})}{y + \frac{v^{2}}{2}}\right]}{2\left(1 - \frac{1}{(2+y)^{2}}\right)}\right) dudv.$$
(10)
$$(11)$$

December 13, 2015 13 / 22

Performance Analysis: When Phase Wrapping Occurs

$$\operatorname{Bias}(\widehat{\Delta\omega}) = \pm \frac{2k\pi}{Q\psi D}, k \in \mathbb{Z}, k \neq 0,$$

$$\operatorname{MSE}(\widehat{\Delta\omega}) = \operatorname{MSE}(\widehat{\Delta\omega}) + \frac{4k^2\pi^2}{Q^2\psi^2 D^2}, k \in \mathbb{Z}, k \neq 0,$$
(13)

where $\widehat{\Delta\omega}$ is the estimated CFO with phase wrapping, and \mathbb{Z} stands for the set of integers.

Experiment Results: Setups

We use a pair of TR boards to evaluate the performances of the proposed CFO estimator. We perform two tests: (a) over the cable transmission (b) over the air transmission.

Parameter	Notation	Value	
Pilot Block Length	М	32	
Transmission Block Length	Q	[288, 608, 1248, 1888, 2528]	
# of Frames	В	[39, 19, 9, 4, 1]	
Backoff Rate	D	4	
Decimation Ratio	ψ	4	
Baseband Sampling Frequency	f _b	125MHz	
Baseband Sampling Interval	T _b	8ns	
Carrier Frequency	f _c	5.8GHz	
# of Trials	U	500	

Table: Configuration of Parameters in Experiment

Experiment Results

Figure: Experimental Results of AOM-R estimator, OTA Test, Basic Signature: (a) with Outliers (b) Without Outliers.

Experiment Results

Figure: Effect of CFO Compensation on EVM: (a) OTA (b) OTC.

- 一司

$Q_{\rm eff}$	$B_{\rm eff}$	AOM-R (dB)	AOM-NR (dB)	$\Delta(AOM)(dB)$
288	39	-9.94	-9.72	0.22
608	19	-9.95	-9.56	0.39
1248	9	-9.95	-9.89	0.06
$Q_{\rm eff}$	B _{eff}	MOA-R	MOA-NR	$\Delta(MOA)$
288	39	-9.94	-9.72	0.22
608	19	-9.97	-9.59	0.38
1248	9	-9.97	-9.92	0.05

Table: EVM Performance of OTA

Q_{eff}	$B_{\rm eff}$	AOM-R (dB)	AOM-NR (dB)	$\Delta(AOM)(dB)$
288	39	-13.68	-13.31	0.37
608	19	-13.70	-13.25	0.45
1248	9	-13.71	-13.66	0.05
Q_{eff}	$B_{\rm eff}$	MOA-R	MOA-NR	$\Delta(MOA)$
288	39	-13.72	-13.35	0.37
608	19	-13.72	-13.27	0.45
1248	9	-13.72	-13.68	0.04

Table: EVM Performance of OTC

- We analyze the effect of CFO for both the channel probing and data transmission phases.
- We propose four highly accurate schemes to estimate the tiny CFO for time-reversal systems with assistance from time-domain pilot.
- Theoretical analyses are rigorously derived together with the conditions to avoid phase wrapping.
- Extensive experimental results in real environment validate the superiority of the proposed schemes.

References

T.-D. Chiueh and P.-Y. Tsai,

OFDM Baseband Receiver Design for Wireless Communications John Wiley and Sons (Asia) Pte Ltd, 2007.

- J. van de Beek, M. Sandell, and P. Borjesson, ML estimation of time and frequency offset in OFDM systems IEEE Trans. Signal Processing, vol. 45, pp. 1800-1805, Jul 1997.
- T. Schmidl and D. Cox.

Robust frequency and timing synchronization for OFDM Communications, IEEE Transactions on, vol. 45, pp. 1613- 1621, Dec 1997.

H. Minn, M. Zeng, and V. Bhargava, On timing offset estimation for OFDM systems Communications Letters, IEEE, vol. 4, pp. 242-244, July 2000.

J. Kim, J. Noh, and K. Chang, Robust timing frequency synchronization techniques for OFDM-FDMA systems in Signal Processing Systems Design and Implementation, 2005. IEEE Workshop on, pp. 716-719, Nov 2005. December 13, 2015

20 / 22

Chen Chen, Hung-Quoc Lai, Yan Chen, K. J. CFO Estimation in TR Communications

References

B. Wang, Y. Wu, F. Han, Y.-H. Yang, and K. J. R. Liu,

Green wireless communications: A time-reversal paradigm Selected Areas in Communications, IEEE Journal on, vol. 29, pp. 1698-1710, September 2011.

Y. Chen, F. Han, Y.-H. Yang, H. Ma, Y. Han, C. Jiang, H.-Q. Lai, D. Claffey, Z. Safar, and K. J. R. Liu,

Time-reversal wireless paradigm for green Internet of Things: An overview *Internet of Things Journal, IEEE*, vol. 1, pp. 81-98, Feb 2014.

C. Chen, Y. Chen, N. Ding, Y. Wang, J.-C. Lin, X. Zeng, and D. Huang, Accurate sampling timing acquisition for baseband OFDM power-line communication in Non-Gaussian noise

Communications, IEEE Transactions on, vol. 61, pp. 1608-1620, April 2013.

Z. Wu, Y. Han, Y. Chen, and K. J. R. Liu,
 A time-reversal paradigm for indoor positioning system
 Vehicular Technology, IEEE Transactions on, vol 64, no. 4, pp. 1331–1339, 2015.

< 4 ∰ > <

Thanks

Chen Chen, Hung-Quoc Lai, Yan Chen, K. J. CFO Estimation in TR Communications

< □ > < ---->

2

э.