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• Theoretically understood & 
interpretable design

Deep Learning

• Black-box architectures 
(e.g. CNN, RNN, 
Transformer)


• Heavily over-parameterized


• Scalable training on large 
datasets (e.g. batch 
processing, GPUs)

• Multi-layer architecture 
derived from interpretable 
signal processing model


• Can use model to inject prior 
knowledge into deep 
architecture (fewer params)


• Can leverage deep learning 
technology for scalable 
training

Model-Based  
Deep Learning [1]

[1] Shlezinger, N., Whang, J., Eldar, Y. C., & Dimakis, A. G. (2020). Model-based deep 
learning. arXiv preprint arXiv:2012.08405.
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clustering signals/images

• Derived from statistical signal processing models (i.e. dictionary learning and mixture 
modeling) 

• Trained as a neural network on large datasets
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MixMate Model
Mixture of Dictionary Learning Models

Key Insight: Each cluster of images is generated by a different dictionary.

Assume  total clusters.K

z ∼ Categorical(π1, π2, …, πK)
K

∑
k=1

πk = 1(Latent) cluster identity: 

x ∼ Laplace(λ) ∝ exp(−λ | |x | |1 )(Latent) sparse code: 

(Observed) data: y |x, z = k ∼ 𝒩(Akx, I) ∝ exp( − | |y − Akx | |2
2 )

Goal: Learn parameters/dictionaries: 
Infer latent variables (for each ):y

A1, A2, …, AK
z, x
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Results: Image Clustering Datasets

Clustering metrics 
(higher=better,  

1.0 is best)

Other state-of-the-art deep clustering networks [1]

MixMate obtains 
best performance 
on all metrics for 

all datasets…

…with the fewest 
number of 

parameters (up to 
50x fewer)!

These numbers don’t 
change even if 90% of 
images have 25% of 

pixels missing → 
MixMate is robust to 

incomplete data!
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Why does MixMate work so well?
Latent sparsity really helps!

Each of the 10 
auto-encoder’s 

output is labeled 
with (recon error, L0 

norm of code)

Three images (0, 8, 9) 
have same recon error!

Cluster 0 has the 
sparsest code → 
data is clustered 

correctly as cluster 0!
Clustering depends 

on both 
reconstruction error 
and latent sparsity.



For more information…
• Paper: https://ieeexplore.ieee.org/document/9747848 


• Lin, A., Song, A. H., & Ba, D. (2022, May). Mixture Model Auto-Encoders: 
Deep Clustering through Dictionary Learning. In ICASSP 2022-2022 
IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP) (pp. 3368-3372). IEEE.


• More information on theory behind our MixMate architecture, initialization 
scheme, tuning the sparsity level, etc. 


• Code:  https://github.com/al5250/mixmate 
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