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Model-Based ModeI-Ba_sed Deep Learning
Signal Processing  Peep Learning [1]
. Simple models with + Multi-layer architecture e Black-box architectures
orincipled effects (e.g. derived from interpretable (e.g. CNN, RNN,
sparsity, low rank, dictionary signal processing model Transtormer)
eaming) » Can use model to inject prior o Heavily over-parameterized

knowledge into deep

* Incorporate prior knowledge - o
and learns few parameters architecture (fewer params) — geaiaple training on large
.  Can leverage deep learning datasets (e.g. batch
* Theoretically understood & o010y for scalable processing, GPUs)

iInterpretable design training

[1] Shlezinger, N., Whang, J., Eldar, Y. C., & Dimakis, A. G. (2020). Model-based deep
learning. arXiv preprint arXiv:2012.08405.
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MixMate Model

Mixture of Dictionary Learning Models

Assume K total clusters.
(Latent) cluster identity: z ~ Gategorical(z, 7, ..., 7) Z m=1
(Latent) sparse code: x ~ Laplace(4) « exp(=A||x]][)

(Observed) data: VIx,z =k~ N (AxT) xexp(— ||y —Ax|[5)

Goal: Learn parameters/dictionaries: A, A,, ..., Ax
Infer latent variables (for each y): 2, X

Key Insight: Each cluster of images is generated by a different dictionary.
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Results: Image Clustering Datasets

Clustering metrics
(higher=Dbetter,
1.0 is best)

[1] Opochinsky, Y., Chazan, S.
E., Gannot, S., & Goldberger, J.
(2020, May). K-autoencoders
deep clustering. In ICASSP
2020-2020 IEEE International
Conference on Acoustics,
Speech and Signal Processing
(ICASSP) (pp. 4037-4041).
IEEE.
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Other state-of-the-art deep clustering networks [1]

DEC* DCN* DAMIC* K-DAE#*® MixMate MixMate obtains
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Params N/A N/A N/A N/A These numbers don’t
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Latent sparsity really helps!

0 1

Each of the 10
auto-encoder’s
output is labeled
with (recon error, LO
norm of code)

Clustering depends
on both
reconstruction error
and latent sparsity.

input

1.050, 10)

|||\I|u....

(0.033, 13) Cluster O has the

, sparsest code —
| || 6 || 6 data is clustered
. M. . . correctly as cluster o

(0.032, 15)

¥l
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n
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For more information...

* Paper: https://ieeexplore.ieee.org/document/974/7/848

* Lin, A., Song, A. H., & Ba, D. (2022, May). Mixture Model Auto-Encoders:
Deep Clustering through Dictionary Learning. In ICASSP 2022-2022

IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (pp. 3368-3372). |IEEE.

 More information on theory behind our MixMate architecture, initialization
scheme, tuning the sparsity level, etc.

 Code: https://qgithub.com/al5250/mixmate
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