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What are Low Resource Languages (LRL)?

* The languages that do not have enough linguistic resources are considered as low resource languages.
* There are approximately over 7000 languages being spoken around the world. (Precoda etal, 2004)

* Only around 100 languages have well established speech recognition systems.

Asia: 2,301 Africa: 2,138 Pacific: 1,313 Europe: 286
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Challenges

* LRL may have few native speakers as only 400 languages have over one million speakers.
* It is tough to record diverse speech data, which is most expensive and time-consuming.

* Transcription process may also take a considerable number of efforts to produce accurate annotated data.

* Linguistic experts must be included in the process to create pronunciation dictionaries.




Proposed Solutions

* Data augmentation
* Multilingual systems
* Cross lingual transfer learning

* Semi-supervised learning

* Meta learning




Meta learning

(Motivation)

* Meta-learning, also known as learning to learn, focuses on improving the learning
efficiency based on previous experiences on wide variety of tasks.

Deep Learning

Huge amount of training
samples

Millions of parameters

Optimal solution




Meta learning
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Model Agnostic
Meta learning
(MAML)

(Finn et al., 2017)
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What has been Done?

* MAML for low resource ASR (Hsu et al, 2020)

* Qutperformed no-pretraining and multilingual training settings

* MAML for accent adaptation (winata et al, 2020)

* Qutperformed joint training setting across various English accents in few shot scenarios




Issues with MAML

* Inconsistent training behaviour

* Slower convergence speed




Proposed Solution

¢ I\/Iulti—step loss (MSL) (Antoniou et al., 2018)
* Originally, proposed for the image classification task.

* It calculates the inner loss after every inner step updates.

* Then computes the weighted sum of all the inner losses.
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Predictions

i

Softmax
t
Linear layer
The ASR model
Transformer
* Transformer based model E
ncoder —> Decoder

* 6 layered VGG extractor

XM XN
* 2encoder layers Positional Encoding
4 decoder layers
8 heads for multi-head attention

Feature Character
Extractor Embeddings
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Experimental Setup
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Datasets

* Common Voice V7.0
* Source language sets

* [fa, ar, ta], [ar, mn, It], [or, pa-IN, hi, ur, as]
* Target language set

* hi, mn, fa, ar, ta

Methodology
* Pretrain
* 100K iterations on 3 source sets
* Fine-tune
* Fine-tune for 10 epochs with beam size of 5.

Table 1: The selected low resource languages from the Com-
mon Voice dataset v7.0 and the total amount of speech data in

terms of hours.

ID Languages | Hours
ar Arabic 85
as Assames |
hi Hindi 8
It Lithuanian 16
mn Mongolian 12
or Odia 0.94
fa Persian 293
pa-IN Punjabi 1
ta Tamil 198
ur Urdu 0.59
Total 615.53
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Experimental Results

Table 2: The average experimental results in terms of character error rate (CER 1n %) on 5 target languages. We have not fine-
tune our model on the languages that are present in the pretrain source language sets. These cells are represented by hyphen

(-).
Protrain | | Finetune
fetrain fangtages Hindi Mongolian Persian Arabic Tamil
MAML | Our | MAML | Our | MAML | Our | MAML | Our | MAML | Our
[fa, ar, ta] 70.51 | 70.47 | 61.05 | 60.52 - - - - - -
[ar, mn, It] 71.61 | 71.37 - - 4796 | 45.45 - - 4096 | 35.17
[or, pa-IN, hi, ur, as] - - 62.26 | 59.50 | 52.42 | 5241 | 36.00 | 36.09 | 4596 | 46.60
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Training performance
(MAML vs MAML with MSL)

* MAML approach with MSL 6
improves the training consistency. 5 -
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Conclusions

* Multi step loss indeed improves the training stability.

* It also has positive impact on the overall accuracy of the model.

* In the future, we plan to conduct more experiments with more low resource languages.




Thank you!
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