

Improved Meta Learning for Low Resource Speech Recognition

Satwinder Singh, Ruili Wang, Feng Hou

s.singh4@massey.ac.nz, ruili.wang@massey.ac.nz, f.hou@massey.ac.nz

School of Mathematical and Computational Sciences

Massey University, Auckland, New Zealand

Outline

- Introduction to low resource languages
- Challenges
- Proposed approach
- Experimental setup and results
- Conclusions

What are Low Resource Languages (LRL)?

- The languages that do not have enough linguistic resources are considered as low resource languages.
- There are approximately over 7000 languages being spoken around the world. (Precoda et al., 2004)
- Only around 100 languages have well established speech recognition systems.

Word Error Rate vs Available data

(Huang et al., 2014)

Challenges

- LRL may have few native speakers as only 400 languages have over one million speakers.
- It is tough to record diverse speech data, which is most expensive and time-consuming.
- Transcription process may also take a considerable number of efforts to produce accurate annotated data.
- Linguistic experts must be included in the process to create pronunciation dictionaries.

Proposed Solutions

- Data augmentation
- Multilingual systems
- Cross lingual transfer learning
- Semi-supervised learning
- Meta learning

Meta learning (Motivation)

• Meta-learning, also known as learning to learn, focuses on improving the learning efficiency based on previous experiences on wide variety of tasks.

Meta learning

(Formulation)

- Input: Meta-training set $\mathscr{D}_{meta-train} = \{(D_{train}^{(n)}), (D_{test}^{(n)})\}_{n=1}^{N}$
- **Output:** Parameters θ algorithm A (Meta-learner)
- Objective: Good performance on $\mathscr{D}_{meta-test} = \{(D_{train}^{'(n)}), (D_{test}^{'(n)})\}_{n=1}^{N'}$

Model Agnostic Meta learning (MAML)

(Finn et al., 2017)

What has been Done?

- MAML for low resource ASR (Hsu et al., 2020)
 - Outperformed no-pretraining and multilingual training settings
- MAML for accent adaptation (Winata et al., 2020)
 - Outperformed joint training setting across various English accents in few shot scenarios

Issues with MAML

• Inconsistent training behaviour

• Slower convergence speed

Proposed Solution

- Multi-step loss (MSL) (Antoniou et al., 2018)
 - Originally, proposed for the image classification task.
 - It calculates the inner loss after every inner step updates.
 - Then computes the weighted sum of all the inner losses.

MAML vs MAML with MSL

MAML with MSL

13

The ASR model

- Transformer based model
 - 6 layered VGG extractor
 - 2 encoder layers
 - 4 decoder layers
 - 8 heads for multi-head attention

Experimental Setup

Datasets

- Common Voice V7.0
- Source language sets
 - [fa, ar, ta], [ar, mn, lt], [or, pa-IN, hi, ur, as]
- Target language set
 - hi, mn, fa, ar, ta

Methodology

- Pretrain
 - 100K iterations on 3 source sets
- Fine-tune
 - Fine-tune for 10 epochs with beam size of 5.

Table 1: The selected low resource languages from the Common Voice dataset v7.0 and the total amount of speech data in terms of hours.

ID	Languages	Hours			
ar	Arabic	85			
as	Assames	1			
hi	Hindi	8			
lt	Lithuanian	16			
mn	Mongolian	12			
or	Odia	0.94			
fa	Persian	293			
pa-IN	Punjabi	1			
ta	Tamil	198			
ur	Urdu	0.59			
	615.53				

Experimental Results

Table 2: The average experimental results in terms of character error rate (CER in %) on 5 target languages. We have not finetune our model on the languages that are present in the pretrain source language sets. These cells are represented by hyphen (-).

Pretrain languages	Finetune										
	Hindi		Mongolian		Persian		Arabic		Tamil		
	MAML	Our	MAML	Our	MAML	Our	MAML	Our	MAML	Our	
[fa, ar, ta]	70.51	70.47	61.05	60.52	-	-	-	-	-	-	
[ar, mn, lt]	71.61	71.37	-	-	47.96	45.45	-	-	40.96	35.17	
[or, pa-IN, hi, ur, as]	-	-	62.26	59.50	52.42	52.41	36.00	36.09	45.96	46.60	

Training performance (MAML vs MAML with MSL)

• MAML approach with MSL improves the training consistency.

Conclusions

- Multi step loss indeed improves the training stability.
- It also has positive impact on the overall accuracy of the model.
- In the future, we plan to conduct more experiments with more low resource languages.

Thank you!

