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What are Low Resource Languages (LRL)?

• The languages that do not have enough linguistic resources are considered as low resource languages.

• There are approximately over 7000 languages being spoken around the world.

• Only around 100 languages have well established speech recognition systems.
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Word Error Rate vs Available data
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Challenges

• LRL may have few native speakers as only 400 languages have over one million speakers.

• It is tough to record diverse speech data, which is most expensive and time-consuming.

• Transcription process may also take a considerable number of efforts to produce accurate annotated data.

• Linguistic experts must be included in the process to create pronunciation dictionaries.
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Proposed Solutions

• Data augmentation

• Multilingual systems

• Cross lingual transfer learning

• Semi-supervised learning

• Meta learning 
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Meta learning 
(Motivation)
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Humans

Deep Learning

Huge amount of training 
samples

Millions of parameters

Optimal solution

• Meta-learning, also known as learning to learn, focuses on improving the learning
efficiency based on previous experiences on wide variety of tasks.



Meta learning
(Formulation) 
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Model Agnostic 
Meta learning 
(MAML)

(Finn et al.,  2017)

9



What has been Done?

• MAML for low resource ASR (Hsu et al., 2020)

• Outperformed no-pretraining and multilingual training settings

• MAML for accent adaptation (Winata et al., 2020)

• Outperformed joint training setting across various English accents in few shot scenarios 
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Issues with MAML

• Inconsistent training behaviour 

• Slower convergence speed
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Proposed Solution

• Multi-step loss (MSL) (Antoniou et al., 2018)

• Originally, proposed for the image classification task.

• It calculates the inner loss after every inner step updates. 

• Then computes the weighted sum of all the inner losses.
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MAML vs MAML 
with MSL
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The ASR model

• Transformer based model

• 6 layered VGG extractor

• 2 encoder layers

• 4 decoder layers

• 8 heads for multi-head attention

14

         



Experimental Setup

Datasets

• Common Voice V7.0

• Source language sets

• [fa, ar, ta], [ar, mn, lt], [or, pa-IN, hi, ur, as]

• Target language set

• hi, mn, fa, ar, ta 

Methodology

• Pretrain

• 100K iterations on 3 source sets

• Fine-tune

• Fine-tune for 10 epochs with beam size of 5.
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Experimental Results 
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Training performance 
(MAML vs MAML with MSL)

• MAML approach with MSL

improves the training consistency.
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Conclusions

• Multi step loss indeed improves the training stability.

• It also has positive impact on the overall accuracy of the model.

• In the future, we plan to conduct more experiments with more low resource languages.
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Thank you!
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