

Towards Transferable Speech Emotion Representation: On Loss Functions For Cross-Lingual Latent Representations

 $\underline{\mathsf{Sneha}\ \mathsf{Das}}^1$, Nicole Nadine Lønfeldt 2 , Anne Katrine Pagsberg 2,3 , Line H. Clemmensen 1

¹Department of Applied Mathematics and Computer Science, Technical University of Denmark ²Child and Adolescent Mental Health Center, Copenhagen University Hospital, Capital Region

³Faculty of Health, Department of Clinical Medicine, Copenhagen University

DTU Compute Department of Applied Mathematics and Computer Science

Motivation

- Speech emotion recognition (SER): inferring emotional state from speech signals.
- Emotion recognition employed in healthcare, education sector, criminal justice system.
- SER: signal processing, machine learning, deep learning.
- Existing challenges: Generalizing over languages, corpora, recording condition (under low-resource conditions).

Objectives and Contributions

Objectives for transferability:

- **1** Latent embedding with discrimination between emotion classes.
- **2** Latent distribution that are consistent over corpora.

Contributions:

- **1** Low-complexity DAE and VAE.
- **2** VAE with KL-loss annealing: balancing KL-loss and reconstruction loss.
- **③** VAE with semi-supervision incorporating clustering in latent space.

Formulation

• DAE:

$$\arg\min_{f_{\theta},g_{\phi}} \quad \mathcal{L}_{\mathsf{rec}} = \mathbb{E} \|\mathbf{x} - g_{\phi}(f_{\theta}(\mathbf{x_n}))\|_2^2, \quad (1)$$

• VAE:

$$\begin{aligned} \arg\min_{\theta,\phi} \quad \mathcal{L}_{\mathsf{rec}} + \mathcal{L}_{\mathsf{KL}} &= -\mathbb{E}_{\mathbf{z} \sim q_{\theta}(\mathbf{z}|\mathbf{x})} \log p_{\phi}(\mathbf{x}|\mathbf{z}) \\ + D_{KL}(q_{\theta}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})), \end{aligned}$$
(2)

Formulation

• VAE with KL-annealing:

$$\begin{aligned} \arg\min_{\theta,\phi} \quad \mathcal{L}_{\mathsf{rec}} + \mathcal{L}_{\mathsf{KL}} &= -\mathbb{E}_{\mathbf{z} \sim q_{\theta}(\mathbf{z}|\mathbf{x})} \log p_{\phi}(\mathbf{x}|\mathbf{z}) \\ &+ \beta_{e} D_{KL}(q_{\theta}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})), \end{aligned}$$
(3)

where the standard formulation of β_e :

$$\beta_e = \begin{cases} f(\tau) = \frac{0.25}{R}\tau, & \tau \leq R\\ 0.25, & \tau > R & \text{where} & \tau = \frac{\text{mod}(e-1, \frac{T}{M})}{\binom{T}{M}}, \end{cases}$$

Formulation

DTU

• VAE with semi-supervision:

$$\arg \min_{\theta,\phi} \quad \mathcal{L}_{\text{rec}} + \beta_e \mathcal{L}_{\text{KL}} + \gamma \mathcal{L}_{\text{clus}},$$
$$\mathcal{L}_{\text{clus}} = \frac{D_{\text{intra}}}{D_{\text{inter}}} = \frac{\sum_{k=1}^{K} \sum_{\forall i \in k} D(\mathbf{z}_i, \overline{\mathbf{z}}^k)}{\sum_{k=1}^{K-1} \sum_{j=k+1}^{K} D(\overline{\mathbf{z}}^k, \overline{\mathbf{z}}^j)}, \quad (5)$$

DTU

Architecture

Figure: Illustration of the architecture employed for all the models explored in this work.

- Training: 50 epochs, batch size 64, Adam optimizer (learning rate: 1e-3).
- Latent embedding used as input features to a linear SVC.

- Datasets: IEMOCAP, SAVEE, Emo-DB, CaFE, URDU, AESD
- Input features: eGeMAPS using OpenSmile
- Preprocessing: remove outliers using z-score normalization (-10 > z > 10)
- 5-fold cross validation

Results: Classification performance

Figure: (1) Balanced accuracy on unseen transfer data sets using (a) 4 emotion classes, (b) 3 emotion classes; balanced accuracy with access to 20% of the unlabeled transfer data sets with (c) 4 emotions and (d) 3 emotion classes.

9 DTU Compute

DTU

Results: Consistency of latent space

Figure: Scatter plots depicting the overlap between the latent embedding obtained from the methods investigated for all the transfer data sets.

Results: Consistency of latent space

Bhattacharya distance

Conclusions

1 DAE: highest classification accuracy, worst distribution consistency.

- **2** VAE-vanilla: best consistency, classification accuracy random.
- **③** VAE-ss: Classification accuracy similar to DAE and distribution consistency similar to VAE-vanilla.