

Conformer-based Hybrid ASR System for Switchboard Dataset

Mohammad Zeineldeen^{1,2,*}, **Jingjing Xu**^{1,*}, Christoph Lüscher^{1,2}, Wilfried Michel^{1,2}, Alexander Gerstenberger¹, Ralf Schlüter^{1,2}, Hermann Ney^{1,2}

RWTH Aachen University¹, AppTek GmbH² ICASSP, May, 2022

Overview

- 1. Introduction
- 2. Our Proposed Conformer Acoustic Model
- 3. Experimental Setup
- 4. Experimental Results
- 5. Conclusion & Outlook

ICASSP, May, 2022

Hybrid ASR system & Conformer Architecture

• Hybrid neural network (NN)-hidden Markov model (HMM) automatic speech recognition (ASR) systems [Bourlard & Morgan 93] have achieved state-of-the-art performance on different tasks [Zhou & Michel⁺ 20, Lüscher & Beck⁺ 19, Kitza & Golik⁺ 19].

Hybrid ASR system & Conformer Architecture

- Hybrid neural network (NN)-hidden Markov model (HMM) automatic speech recognition (ASR) systems [Bourlard & Morgan 93] have achieved state-of-the-art performance on different tasks [Zhou & Michel⁺ 20, Lüscher & Beck⁺ 19, Kitza & Golik⁺ 19].
- Recently, the conformer model [Gulati & Qin⁺ 20], was proposed and achieved state-of-the-art performance on Librispeech 960h dataset [Panayotov & Chen⁺ 15].

Hybrid ASR system & Conformer Architecture

- Hybrid neural network (NN)-hidden Markov model (HMM) automatic speech recognition (ASR) systems [Bourlard & Morgan 93] have achieved state-of-the-art performance on different tasks [Zhou & Michel⁺ 20, Lüscher & Beck⁺ 19, Kitza & Golik⁺ 19].
- Recently, the conformer model [Gulati & Qin⁺ 20], was proposed and achieved state-of-the-art performance on Librispeech 960h dataset [Panayotov & Chen⁺ 15].
- The conformer architecture was investigated for different end-to-end systems such as attention encoder-decoder models [Wang & Sun^+ 21, Tüske & $Saon^+$ 21]

Hybrid ASR system & Conformer Architecture

- Hybrid neural network (NN)-hidden Markov model (HMM) automatic speech recognition (ASR) systems [Bourlard & Morgan 93] have achieved state-of-the-art performance on different tasks [Zhou & Michel⁺ 20, Lüscher & Beck⁺ 19, Kitza & Golik⁺ 19].
- Recently, the conformer model [Gulati & Qin⁺ 20], was proposed and achieved state-of-the-art performance on Librispeech 960h dataset [Panayotov & Chen⁺ 15].
- The conformer architecture was investigated for different end-to-end systems such as attention encoder-decoder models [Wang & Sun^+ 21, Tüske & $Saon^+$ 21]
- Impact of conformer acoustic model for hybrid ASR has not been investigated

Hybrid ASR system & Conformer Architecture

- Hybrid neural network (NN)-hidden Markov model (HMM) automatic speech recognition (ASR) systems [Bourlard & Morgan 93] have achieved state-of-the-art performance on different tasks [Zhou & Michel⁺ 20, Lüscher & Beck⁺ 19, Kitza & Golik⁺ 19].
- Recently, the conformer model [Gulati & Qin⁺ 20], was proposed and achieved state-of-the-art performance on Librispeech 960h dataset [Panayotov & Chen⁺ 15].
- The conformer architecture was investigated for different end-to-end systems such as attention encoder-decoder models [Wang & Sun⁺ 21, Tüske & Saon⁺ 21]
- Impact of conformer acoustic model for hybrid ASR has not been investigated
- ⇒ We present and evaluate a competitive conformer-based hybrid model training recipe

ICASSP, May, 2022

Efficient Training With Time Down-/up-sampling

• The self-attention mechanism requires allocating the whole input batch sequences into memory

ICASSP, May, 2022

- The self-attention mechanism requires allocating the whole input batch sequences into memory
- The time complexity of self-attention mechanism grows quadratically with sequence length

- The self-attention mechanism requires allocating the whole input batch sequences into memory
- The time complexity of self-attention mechanism grows quadratically with sequence length
- Different time down-sampling techniques were introduced, mainly for end-to-end systems [Chan & Jaitly $^+$ 16, Zeyer & Alkhouli $^+$ 18]

- The self-attention mechanism requires allocating the whole input batch sequences into memory
- The time complexity of self-attention mechanism grows quadratically with sequence length
- Different time down-sampling techniques were introduced, mainly for end-to-end systems [Chan & Jaitly $^+$ 16, Zeyer & Alkhouli $^+$ 18]
- It is not straightforward to apply such down-sampling methods for models trained with frame-wise target alignment

- The self-attention mechanism requires allocating the whole input batch sequences into memory
- The time complexity of self-attention mechanism grows quadratically with sequence length
- Different time down-sampling techniques were introduced, mainly for end-to-end systems [Chan & Jaitly $^+$ 16, Zeyer & Alkhouli $^+$ 18]
- It is not straightforward to apply such down-sampling methods for models trained with frame-wise target alignment
- ⇒ We apply time downsampling for efficient training and use transposed convolutions to upsample the output sequence

Standard Conformer Architecture [Gulati & Qin⁺ 20]

- One conformer block consists of 3 types of modules: feed-forward (FFN) module, multi-head self-attention (MHSA) module, convolution (Conv) module
- Let x be the input sequence to conformer block i, then the equations of conformer block can be defined:

$$x_{FFN_1} = x + \frac{1}{2} \text{FFN}(x)$$
 $x_{MHSA} = x_{FFN_1} + \text{MHSA}(x_{FFN_1})$
 $x_{Conv} = x_{MHSA} + \text{Conv}(x_{MHSA})$
 $x_{FFN_2} = x_{Conv} + \frac{1}{2} \text{FFN}(x_{Conv})$
ConformerBlock; = LayerNorm(x_{FFN_2})

Our Proposed Conformer Acoustic Model

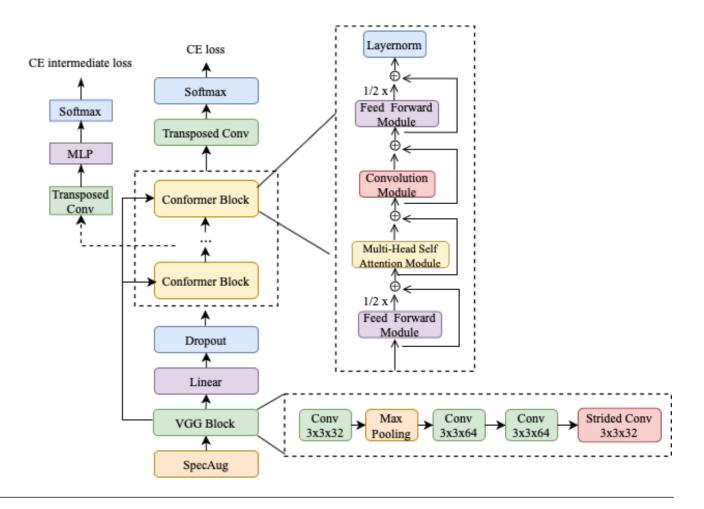
Time down-/up-sampling

- Use a strided convolution as part of the VGG network for downsampling.
- Use transposed convolution to upsample again to the frame-wise target alignment length before output

Intermediate loss[Tjandra & Liu⁺ 20]: add intermediate losses at different layers

LongSkip: connect the output of the VGG network to the input of each conformer block [Huang & Liu⁺ 17]

Parameter sharing: share the parameters of intermediate loss layers and the ones of transposed convolution layers



Experimental Setup

Data

- Switchboard 300h dataset (English telephone speech)
- Hub5'00 (Switchboard + CallHome) as development set and Hub5'01 as test set.

Baseline

- Input: 40-dimensional Gammatone features
- Output units: 9001 state-tied CART (Classification and Regression Tree) labels
- Target: frame-wise alignment generated from a HMM-GMM system
- Model size: 12 conformer blocks
- Model dimension: attention dimension of each MHSA module is 512 with 8 attention heads, dimension
 of the feed-forward module is 2048
- Regularization: dropout with 10%, focal loss with factor 2

Experimental Setup

Language Model

- Use 4-gram count-based language model (LM) and LSTM LM in single pass decoding
- Use transformer (Trafo) LM for rescoring

LM	PPL (word-level) on Hub5'00
4-gram	79.5
LSTM	51.3
Transformer	48.1

Sequence Discriminative Training

- Lattice-based state-level minimum Bayes risk (sMBR) criterion
- Lattices generated using a bigram LM
- sMBR loss scale 0.9 and CE loss scale 0.1

Kernal size & Number of Conformer Blocks (with 4-gram LM)

- Kernel size has a significant effect on WER
- Using smaller kernel size for depth-wise convolution is better
- We gain performance as we use deeper network
- Kernel size for depth-wise convolution

Kernel	WER [%]				
size	Hub5'00				
3120	SWB	СН	Total		
6	8.4	17.1	12.8		
8	8.1	16.8	12.5		
16	8.2	17.6	12.9		
32	8.4	18.0	13.2		

Number of Conformer blocks comparison

	L	Params. [M]	WER [%] Hub5'00				
			SWB	СН	Total		
	6	42	8.5	18.0	13.3		
	8	59	8.1	17.3	12.7		
	12	88	8.1	16.8	12.5		

Time Downsampling Factors and Variants (with 4-gram LM)

- Set the filter size and the stride of the transposed convolution as time reduction factor
- Choose down-samping factor 3 by considering tradeoff between speed and performance
- Strided convolution applied at the end of the VGG network works best
- Time downsampling factor comparison

Factor	Train	WER [%]				
	time [h]	Hub5'00				
		SWB	СН	Total		
2	1.28	8.3	16.4	12.4		
3	0.92	8.1	16.8	12.5		
4	0.86	8.4	17.9	13.2		
5	0.73	8.7	18.6	13.7		

Time downsampling variants comparison

	WER [%]			
Method	Hub5'00			
	SWB	CH	Total	
BLSTM + maxpool	8.2	17.0	12.7	
VGG-layer2	8.4	17.7	13.1	
VGG-layer4	8.1	16.8	12.5	

^{*} VGG-layerX refers to strided convolution as X^{th} layer of VGG network, BLSTM+maxpool refers to one BLSTM layer with 512 units followed by time max-pooling layer

Ablation Study of Training Methods (with 4-gram LM)

- SpecAugment is the most important method giving 20% relative improvement
- Using intermediate loss is important for better convergence and gives 7% relative improvement in WER
- Sharing parameters between transposed convolutions helps
- Other training methods have marginal improvements

	WER [%]				
Training method	Hub5'00				
	SWB	СН	Total		
Baseline	8.1	16.8	12.5		
- SpecAugment	9.8	21.5	15.7		
- Intermediate loss	8.9	18.1	13.5		
- Share transp. conv params.	8.5	17.3	12.9		
- LongSkip	8.1	17.2	12.7		
- Focal Loss	8.1	17.0	12.6		
+ Share MLP params.	8.2	16.9	12.5		

ICASSP, May, 2022

Comparison between Conformer and BLSTM AM (with 4-gram LM)

- \bullet The BLSTM-based model consists of 6 BLSTM layers following a well-optimized setup as here [Kitza & Golik $^+$ 19]
- \bullet With comparable number of parameters, conformer AM outperforms BLSTM AM by around 9% relative

AM	LSTM dim.	Params. [M]	Hub5'00
	500	41	14.2
	600	57	13.8
BLSTM	700	76	13.8
	800	96	13.7
	1000	146	13.3
Conformer	-	88	12.5

Overall Results

- 8.5% relatively better on Hub5'00 compared to BLSTM hybrid system with LSTM LM
- Outperforms a well-trained RNN-T model with much fewer epochs.
- On par with a well-optimized BLSTM attention system [Tüske & Saon⁺ 20] on Hub5'01 test set
- The state-of-the-art conformer attention-based system trains much longer and uses cross-utterance LM

Work	#Epochs	Approach	AM	LM	seq. train	WER Hub 5'00	Hub
[Kitza & Golik ⁺ 19]	-	Hybrid	LSTM	4-gram LSTM	yes	13.9 11.7	_
[Zhou & Berger ⁺ 21]	100	RNN-T	LSTM	LSTM Trafo	no	11.5 11.2	_
[Tüske & Saon ⁺ 20]	250	LAS	LSTM	LSTM	no	9.8	10.1
[Tüske & Saon ⁺ 21]	250	LAS	Conf.	LSTM Trafo	no	9.9 8.6 8.4	10.1 8.5 8.5
				4-gram LSTM	no	12.5 11.3	
ours	27	Hybrid	Conf.	4-gram LSTM Trafo	yes	11.9 10.7 10.3	10.1

Conclusion & Outlook

Summary

- For the first time, a training recipe for a conformer-based hybrid model is evaluated
- We combined different training methods from the literature that boosted the word-error-rate
- We applied time down-sampling using strided convolution to speedup training and used transposed convolution as a simple method to upsample again
- We observed SpecAugment and intermediate loss layers are necessary to achieve good performance
- Our model outperforms the BLSTM-based hybrid model significantly

Follow up work

• We extend this training recipe as well as use speaker adaptation to improve the WER 11% relative i.e. from 10.3 to 9.2 on Hub5'00 with Transformer LM [Zeineldeen & Xu⁺]

Thank you for your attention

Any questions?

[Bourlard & Morgan 93] H. A. Bourlard, N. Morgan. Connectionist Speech Recognition: A Hybrid Approach. Kluwer Academic Publishers, USA, 1993.

[Chan & Jaitly⁺ 16] W. Chan, N. Jaitly, Q. Le, O. Vinyals. Listen, Attend and Spell: A Neural Network for Large Vocabulary Conversational Speech Recognition. In *ICASSP*, pp. 4960–4964, May 2016.

[Gulati & Qin⁺ 20] A. Gulati, J. Qin, C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, Z. Zhang, Y. Wu, R. Pang.

Conformer: Convolution-augmented Transformer for Speech Recognition.

In INTERSPEECH, pp. 5036-5040, Shanghai, China, Oct. 2020.

[Huang & Liu⁺ 17] G. Huang, Z. Liu, K. Q. Weinberger. Densely Connected Convolutional Networks. In *CVPR*, pp. 2261–2269, Los Alamitos, CA, USA, jul 2017.

- [Kitza & Golik⁺ 19] M. Kitza, P. Golik, R. Schlüter, H. Ney. Cumulative Adaptation for BLSTM Acoustic Models. In *INTERSPEECH*, pp. 754–758, Graz, Austria, Sept. 2019.
- [Lüscher & Beck⁺ 19] C. Lüscher, E. Beck, K. Irie, M. Kitza, W. Michel, A. Zeyer, R. Schlüter, H. Ney. RWTH ASR Systems for LibriSpeech: Hybrid vs Attention. In *INTERSPEECH*, pp. 231–235, Graz, Austria, Sept. 2019.
- [Panayotov & Chen⁺ 15] V. Panayotov, G. Chen, D. Povey, S. Khudanpur. LibriSpeech: An ASR Corpus Based on Public Domain Audio Books. In *ICASSP*, pp. 5206–5210, South Brisbane, Australia, April 2015.
- [Tjandra & Liu⁺ 20] A. Tjandra, C. Liu, F. Zhang, X. Zhang, Y. Wang, G. Synnaeve, S. Nakamura, G. Zweig.
 - DEJA-VU: Double Feature Presentation and Iterated Loss in Deep Transformer Networks. In *ICASSP*, pp. 6899–6903, Barcelona, Spain, May 2020.

[Tüske & Saon⁺ 21] Z. Tüske, G. Saon, B. Kingsbury. On the Limit of English Conversational Speech Recognition. *CoRR*, Vol. abs/2105.00982, May 2021.

[Tüske & Saon⁺ 20] Z. Tüske, G. Saon, K. Audhkhasi, B. Kingsbury.
Single Headed Attention Based Sequence-to-Sequence Model for State-of-the-Art Results on Switchboard.

In INTERSPEECH, pp. 551–555, Shanghai, China, Sept. 2020.

[Wang & Sun⁺ 21] X. Wang, S. Sun, L. Xie, L. Ma. Efficient Conformer with Prob-Sparse Attention Mechanism for End-to-EndSpeech Recognition. *CoRR*, Vol. abs/2106.09236, June 2021.

[Zeineldeen & Xu⁺] M. Zeineldeen, J. Xu, C. Lüscher, R. Schlüter, H. Ney. Improving the Training Recipe for a Robust Conformer-based Hybrid Model. Submitted to INTERSPEECH 2022.

[Zeyer & Alkhouli⁺ 18] A. Zeyer, T. Alkhouli, H. Ney. RETURNN as a Generic Flexible Neural Toolkit with Application to Translation and Speech Recognition. In *Annual Meeting of the Assoc. for Computational Linguistics*, Melbourne, Australia, July 2018.

[Zhou & Berger⁺ 21] W. Zhou, S. Berger, R. Schlüter, H. Ney. Phoneme Based Neural Transducer for Large Vocabulary Speech Recognition. In *ICASSP*, pp. 5644–5648, June 2021.

[Zhou & Michel⁺ 20] W. Zhou, W. Michel, K. Irie, M. Kitza, R. Schlüter, H. Ney. The RWTH ASR System for TED-LIUM Release 2: Improving Hybrid HMM with SpecAugment. In *ICASSP*, pp. 7839–7843, Barcelona, Spain, May 2020.

