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Emotion Labels and Inter-rater Ambiguity

• Typically, emotion ratings are collected
from multiple human raters.

• Emotions are not perceived uniformly
across individuals.

• Most of the existing works take the
average or weighted average of
multiple ratings as ‘gold standard’.

• The inter-rater ambiguity which
contains emotion subtlety information
is ignored.

A speech emotion prediction
system that is able to model
both the emotion state, as well
as the ambiguity in the state.
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Challenges with Inter-rater Ambiguity
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Existing Work - Modelling Emotion Ambiguity
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Existing Work - Modelling Emotion Ambiguity
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Linear Dynamical Systems

Gaussian mixture model (GMM) with Kalman filter capturing 
time variations of emotion ambiguity (Dang , et al., 2018).

Gaussian Process

Gaussian Process modelling the ambiguity that captures 
emotion temporal dynamics (Atcheson , et al., 2019).
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Develop an ambiguity aware emotion prediction framework that models time-varying emotion state (arousal 
and valence) as well as the ambiguity in the perceived emotion, with non-parametric and non-linear 
dynamical model.

Objective
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Time

Proposed Sequential Monte Carlo Framework
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Continuous State Space Model
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Proposed Sequential Monte Carlo Framework
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SMC Processes Breakdown – State Transition
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SMC Processes Breakdown – State observation
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Validation: Proposed Measures

• Distributions should be narrow.
• Predicted mean should be closed to the ground truth mean.

Low Ambiguity Region

raters

(a) (b)

Underlying 
distribution
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Proposed Measures

• Mean is less important.
• Distributions should be broad.

High Ambiguity Region

(a) (b)
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Experimental Settings

• Corpus: the RECOLA dataset; 9 training & 9 development utterances.

• Arousal & valence labels; 6 annotators.

• 40ms sampling rate; 1 second window (50% overlap).

• Delay compensation: 4 seconds for arousal and 2 seconds for valence.

• Features: Bag-of-audio-words(BoAW) features with 100 clusters.

• 8 - mixture GMM for 𝜆𝜆1, 4 – mixture GMM for 𝜆𝜆2
• 1000 particles.
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Experimental Results

Arousal Valence

CCC CC CCC CC
BLSTM (Han, et al., 2017) 0.103 - 0.075 -
GMR (Dang, et al., 2018) - 0.568 - 0.132

Proposed SMC 0.403 0.456 0.195 0.201

Table 1 CCC and CC measure between predicted SD and SD from 6 
annotators
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Experimental Results

High AmbiguityLow Ambiguity
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Conclusions

• We present a novel Sequential Monte Carlo framework that predicts both 
the emotion state (arousal and valence) and the ambiguity in the perceived 
emotion.

• It can be employed as a non-parametric, non-linear dynamical model for 
predicting these ambiguous emotion states.

• Experimental validation shows that the proposed framework is able to track 
the level of ambiguity in the labels over time. It predicts the emotion state 
accurately within regions of low ambiguity, and it identifies the regions of 
high ambiguity.
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Thank you
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Gaussian Mixture Model 𝝀𝝀𝟐𝟐 Training
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Experimental Results
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