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1. Introduction 2. Proposed Sequential Monte Garlo Framework
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3. Proposed Measures 4. Results 9. Experimental Settings
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Deciles of Ground truth SD

* Inter-rater differences 1n emotion annotations reflecting
ambiguity 1n the state can be represented as a series of non-
parametric distributions.
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* Concordance correlation coefficient (CCC) between prediction
standard deviation the standard deviation of the emotion ratings;

* Mean squared error (MSE) between prediction mean and ground
truth mean label for different frames partitioned into deciles based
on the standard deviation of the labels. "0 200 220 240 200 20 200 320 340 360
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R The proposed framework 1s able to track the level of ambiguity
0 o1 02 03 04 05 in the labels over time and predict the emotion state accurately
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within regions of low ambiguity.
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