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Remote Sensing Data Classification
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• Massive high-dimensional observations acquired 
across multiple time instances

• Land-cover classification, semantic segmentation

• Flood detection, crop classification

High-resolution satellite sensors Periodic data collection

Efficient way of capturing multi-dimensional 
dependencies & correlations!
Avoid any information loss!
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• Multi-Spectral (MS) Imaging
 Acquire info across the EM spectrum

 Spectrum of light that is scattered by some materials on Earth’s surface

 Usually ~3-12 spectral bands

 2 spatial & 1 spectral dimensions

• Multi-Temporal (MT) Imaging
 Acquire remotely sensed data from >1 time period

 Information about how our world is changing

 Provide the tools to monitor land use and land cover change

 Usually time-series of MS images
 2 spatial, 1 spectral & 1 temporal dimensions

3D MS 
data-cube

2013 2014 2015 2016

Time

4D MS-MT 
data-cube
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4D-CNNs (I)
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• Goal: Exploit spatial, spectral and temporal information at the 
same time

• How: Stacking multiple sequences of 3D convolutions along the 
last dimension

Involved Parameters

• 𝑦𝑘,𝑙,𝑚,𝑛: Convolved output neuron at position 𝑘, 𝑙,𝑚, 𝑛

• 𝑓(. ): Activation function

• 𝑤𝑖,𝑗,𝑡,𝑠: Value of the kernel connected to the current feature 

map at position 𝑖, 𝑗, 𝑡, 𝑠

• 𝑥𝑐, 𝑘+𝑖 𝑙+𝑗 𝑚+𝑡 𝑛+𝑠 : Value of the input neuron at channel 

c

• 𝑏𝑖,𝑗,𝑡,𝑠: Bias of the computed feature map

• 𝐻: Height, 𝑊: Width, 𝑇: Temporal length, 𝑆: Spectral bands

• 𝐶𝑖𝑛: Number of original channels/feature maps of previous 

layer

• 𝐶3𝐷: 3D-convolution operator
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Why going stacked

• Fast GPU-based implementation using Tensorflow primitives

• Is it feasible? Yes
 Convolution: Linear operation  Summation order can change

 Implementation: Further re-arrangement of sums’ indices [1-2]
Not separable convolution

[1] A. Myronenko et. al, “4D CNN for Semantic Segmentation of Cardiac Volumetric Sequences”, in Proceedings of the International Workshop on Statistical Atlases
and Computational Models of the Heart, Lima, Peru, 4 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 72-80.
[2] M. Giannopoulos, G. Tsagkatakis and P. Tsakallides “4D U-Nets for Multi-Temporal Remote Sensing Data Classification”, Remote Sensing, Vol. 14, No. 3,
Multidisciplinary Digital Publishing Institute, 28 January 2022 .



MT-RS Land-Cover Classification
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4D Model Architecture
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[3] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, “Deep supervised learning for hyperspectral data classification through convolutional neural
networks,” in 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2015, pp. 4959-4962.
[4] M. Giannopoulos, G. Tsagkatakis and P. Tsakallides, “On the Impact of Tensor Completion in the Classification of Undersampled Hyperspectral Imagery”, in 2018
26th European Signal Processing Conference (EUSIPCO). IEEE, 2018, pp. 1975-1979 .

Fully Convolutional (FC) network

• No pooling layers:

 No need for considering scaling/translation factors 

• FC nets perform remarkably in similar tasks (i.e. Hyper-

Spectral pixel-level classification [3,4])

Model Topology

• Stacks of (Convolutional-Batch Normalization-ReLU) layers

• Kernel-size: Equal to 3 across every dimension

 Padding=“same”

• Loss function: Categorical cross-entropy

• Optimizer: Adam

 Learning-rate=0.0001

 𝛽1 = 0.9, 𝛽2 = 0.999

• Batch-size: 128

• Epochs: 100
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Dataset Description

47th ICASSP Conference, Singapore, May 202218/4/2022
4D Convolutional Neural Networks for Multi-Spectral
and Multi-Temporal Remote Sensing Data Classification

12

• Landsat-8 MS imagery, collected once a year through 2013-2016
 4000x4000x9x4 measurements (spatial, spatial, spectral, temporal)

• USGS NLCD labels of 2016
 15 different land-cover classes

• Pre-processing steps:
 Selection of a tile with no undefined label values

 Spatial padding, until spatial size reaches (4096,4096) pixels

 Spatial subsampling every 16 pixels, until spatial size reaches (256,256) pixels

 Spatial patch-extraction around each pixel, across all spectral bands & time 
instances

 Created data: 65536 samples, of size (p,p,9,4) each

• Dataset split: Uniformly at random
 Training-set: 60%, Validation-set: 20%, Test-set: 20%

IEEE GRSS Data Fusion Contest dataset
2250 image tiles over Maryland-State, USA



Dataset Visualization
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Labels’ distribution: Training Set Labels’ distribution: Validation Set Labels’ distribution: Test Set

Labels’ names Labels’ overview Labels’ overview-RGB
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Cross-Validated Parameters

• #Stack-of-layers in each architecture 

(i.e. 2, 3, 4)

• Spatial patch-size of training samples 

(i.e. 5x5, 7x7)

Deep Learning Models

• 2D-CNN: Exploit spatial info

• 3D-CNN-T: Exploit spatial & temporal info

• 3D-CNN-S: Exploit spatial & spectral info

• 4D-CNN (Proposed): Exploit spatial & 

spectral & temporal info

[8] Shunping Ji, Chi Zhang, Anjian Xu, Yun Shi, and Yulin Duan, “3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing
Images,” Remote Sensing, Vol. 10, No. 1, pp. 75, 2018.

Comparison ML and S-o-t-A Models

• Support Vector Machines (Gaussian Kernel)

• k-Nearest Neighbors (k=5)

• 3D-CNN [8]

Employed Platforms

• Software: Python, Tensorflow, Keras

• Hardware: NVIDIA Quadro P4000 (8Gb RAM)



4D-CNN Architectures Parameter Tuning
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• Goal: Assess the performance of the CNN models relative to:
 The number of stack-of-layers they consist of

 The spatial patch-size they are trained with

• 4D-CNN model achieves an accuracy improvement of up to 8.36% over the second 
best model (89.16% vs 80.80%)!

• 4D-CNN model converges faster to higher classification accuracy value

• 4D-CNN model less prone to over-fitting issues

All trained CNN models Best trained CNN models Top-2 trained CNN models



Comparison to S-o-t-A & ML Methods
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• Goal: Compare best CNN models with S-o-t-A and ML methods
• 4D-CNN model achieves an F1-Score improvement of up to 12.44% over the second best 

model (77.96% vs 65.52%)  Class-imbalance robustness
• 4D-CNN model is ~7 slower than the second best model (~1.8hrs vs ~15mins)
• 4D-CNN model ends up with clear segmented regions w.r.t. ground-truth labels

Model Accuracy Time F1-Score

k-NN 0.7443 0.000 0.5747

SVM-
Gaussian

0.5945 2.006 0.4995

3D-CNN [8] 0.7097 6.003 0.5090

2D-CNN 0.6049 4.928 0.3624

3D-CNN-T 0.8080 14.558 0.6509

3D-CNN-S 0.7953 27.435 0.6552

4D-CNN 0.8916 107.619 0.7796

Actual labels Predicted labels-SVM-Gaussian Predicted labels-k-NN

Predicted labels-3D-CNN [8] Predicted labels-3D-CNN-T Predicted labels-4D-CNN



Agenda

PART A: Motivation
a. Remote Sensing Data Classification

b. Multi-Spectral & Multi-Temporal Imaging

PART B: Proposed Method
a. 4D-Convolutional Neural Networks

b. Multi-Temporal Remote Sensing Land-Cover Classification

c. 4D Model Architecture

PART C: Experimental Evaluation
a. Dataset Description-Dataset Visualization

b. Experimental Setup

c. Experimental Results

PART D: Conclusions and Future Directions

Acknowledgments

1718/4/2022 47th ICASSP Conference, Singapore, May 2022
4D Convolutional Neural Networks for Multi-Spectral
and Multi-Temporal Remote Sensing Data Classification



Conclusions & Future Directions
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• Efficient classification of MT-RS data via 4D-CNNs

• Clear improvements over lower-dimensional CNNs, machine 

learning and state-of-the-art methods

• Robustness towards class-imbalance regimes

• 4D-Convolutional Neural Networks
 Effective exploitation of higher-order correlations without any 

information loss
 End-to-end learning of spatio-spectro-temporal features at the same 

time
 Computational burden not prohibitive

• Future Work
 Ameliorate implementation Faster models
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