

4D Convolutional Neural Networks for Multi-Spectral and

Multi-Temporal Remote Sensing Data Classification

M. Giannopoulos, G. Tsagkatakis, P. Tsakalides

Signal Processing Lab, Institute of Computer Science-Foundation for Research and Technology (FORTH)-Hellas, Crete, Greece Computer Science Department, University of Crete, Crete, Greece

PART A: Motivation

- a. Remote Sensing Data Classification
- b. Multi-Spectral & Multi-Temporal Imaging

PART B: Proposed Method

- a. 4D-Convolutional Neural Networks
- b. Multi-Temporal Remote Sensing Land-Cover Classification
- c. 4D Model Architecture

PART C: Experimental Evaluation

- a. Dataset Description-Dataset Visualization
- b. Experimental Setup
- c. Experimental Results

PART D: Conclusions and Future Directions

Acknowledgements

PART A: Motivation

- a. Remote Sensing Data Classification
- b. Multi-Spectral & Multi-Temporal Imaging

PART B: Proposed Method

- a. 4D-Convolutional Neural Networks
- b. Multi-Temporal Remote Sensing Land-Cover Classification
- c. 4D Model Architecture

PART C: Experimental Evaluation

- a. Dataset Description-Dataset Visualization
- b. Experimental Setup
- c. Experimental Results

PART D: Conclusions and Future Directions

Acknowledgments

Remote Sensing Data Classification

Avoid any information loss!

18/4/2022 47th ICASSP Conference, Singapore, May 2022

MS & MT Imaging

<u>Multi-Spectral (MS) Imaging</u>

- Acquire info across the EM spectrum
- Spectrum of light that is scattered by some materials on Earth's surface
- Usually ~3-12 spectral bands
- 2 spatial & 1 spectral dimensions

<u>Multi-Temporal (MT) Imaging</u>

- Acquire remotely sensed data from >1 time period
- Information about how our world is changing
- Provide the tools to monitor land use and land cover change

3D MS data-cube

18/4/2022 47th ICASSP Conference, Singapore, May 2022

PART A: Motivation

- a. Remote Sensing Data Classification
- b. Multi-Spectral & Multi-Temporal Imaging

PART B: Proposed Method

- a. 4D-Convolutional Neural Networks
- b. Multi-Temporal Remote Sensing Land-Cover Classification
- c. 4D Model Architecture

PART C: Experimental Evaluation

- a. Dataset Description-Dataset Visualization
- b. Experimental Setup
- c. Experimental Results

PART D: Conclusions and Future Directions

Acknowledgements

4D-CNNs (I)

- <u>Goal</u>: Exploit spatial, spectral and temporal information at the same time
- <u>How</u>: Stacking multiple sequences of 3D convolutions along the last dimension

$$y_{k,l,m,n} = f\left(\sum_{c}^{C_{in}} \sum_{s=0}^{S-1} \sum_{t=0}^{T-1} \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} w_{i,j,t,s} x_{c,(k+i)(l+j)(m+t)(n+s)} + b_{i,j,t,s}\right)$$
$$= f\left(\sum_{s=0}^{S-1} \left[\sum_{c}^{C_{in}} \sum_{t=0}^{T-1} \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} w_{i,j,t,s} x_{c,(k+i)(l+j)(m+t)(n+s)}\right] + b_{i,j,t,s}\right)$$
$$= f\left(\sum_{s=0}^{S-1} C_{3D} + b_{i,j,t,s}\right)$$

Involved Parameters

- $y_{k,l,m,n}$: Convolved output neuron at position (k, l, m, n)
- f(.): Activation function
- $w_{i,j,t,s}$: Value of the kernel connected to the current feature map at position (i, j, t, s)
- $x_{c,(k+i)(l+j)(m+t)(n+s)}$: Value of the input neuron at channel c
- $b_{i,j,t,s}$: Bias of the computed feature map
- *H*: Height, *W*: Width, *T*: Temporal length, *S*: Spectral bands
- *C_{in}*: Number of original channels/feature maps of previous layer
- C_{3D} : 3D-convolution operator

4D-CNNs (II)

Why going stacked

- Fast GPU-based implementation using Tensorflow primitives
- <u>Is it feasible</u>? Yes
 - \succ Convolution: Linear operation \rightarrow Summation order can change
 - ➤ Implementation: Further re-arrangement of sums' indices [1-2] → Not separable convolution

 [1] A. Myronenko et. al, "4D CNN for Semantic Segmentation of Cardiac Volumetric Sequences", in Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Lima, Peru, 4 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 72-80.
 [2] M. Giannopoulos, G. Tsagkatakis and P. Tsakallides "4D U-Nets for Multi-Temporal Remote Sensing Data Classification", Remote Sensing, Vol. 14, No. 3, Multidisciplinary Digital Publishing Institute, 28 January 2022.

MT-RS Land-Cover Classification

4D Model Architecture

Fully Convolutional (FC) network

- No pooling layers:
 - No need for considering scaling/translation factors
- FC nets perform remarkably in similar tasks (i.e. Hyper-Spectral pixel-level classification [3,4])

Model Topology

- Stacks of (Convolutional-Batch Normalization-ReLU) layers
- Kernel-size: Equal to 3 across every dimension
 - Padding="same"
- Loss function: Categorical cross-entropy
- Optimizer: Adam
 - Learning-rate=0.0001
 - \succ $\beta_1 = 0.9, \beta_2 = 0.999$
- Batch-size: 128
- Epochs: 100

[3] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, "Deep supervised learning for hyperspectral data classification through convolutional neural networks," in 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2015, pp. 4959-4962.
[4] M. Giannopoulos, G. Tsagkatakis and P. Tsakallides, "On the Impact of Tensor Completion in the Classification of Undersampled Hyperspectral Imagery", in 2018 26th European Signal Processing Conference (EUSIPCO). IEEE, 2018, pp. 1975-1979.

PART A: Motivation

- a. Remote Sensing Data Classification
- b. Multi-Spectral & Multi-Temporal Imaging

PART B: Proposed Method

- a. 4D-Convolutional Neural Networks
- b. Multi-Temporal Remote Sensing Land-Cover Classification
- c. 4D Model Architecture

PART C: Experimental Evaluation

- a. Dataset Description-Dataset Visualization
- b. Experimental Setup
- c. Experimental Results

PART D: Conclusions and Future Directions

Acknowledgments

Dataset Description

IEEE GRSS Data Fusion Contest dataset 2250 image tiles over Maryland-State, USA

- Landsat-8 MS imagery, collected once a year through 2013-2016
 - 4000x4000x9x4 measurements (spatial, spatial, spectral, temporal)
- USGS NLCD labels of 2016
 - > 15 different land-cover classes
- Pre-processing steps:
 - Selection of a tile with no undefined label values
 - Spatial padding, until spatial size reaches (4096,4096) pixels
 - Spatial subsampling every 16 pixels, until spatial size reaches (256,256) pixels
 - Spatial patch-extraction around each pixel, across all spectral bands & time instances
 - Created data: 65536 samples, of size (p,p,9,4) each
- Dataset split: Uniformly at random
 - Training-set: 60%, Validation-set: 20%, Test-set: 20%

Dataset Visualization

Labels' names

Class ID	Class Value	Class Name
1	11	Open Water
2	21	Developed, Open Space
3	22	Developed, Low Intensity
4	23	Developed, Medium Intensity
5	24	Developed High Intensity
6	31	Barren Land (Rock/Sand/Clay)
7	41	Deciduous Forest
8	42	Evergreen Forest
9	43	Mixed Forest
10	52	Shrub/Scrub
11	71	Grassland/Herbaceous
12	81	Pasture/Hay
13	82	Cultivated Crops
14	90	Woody Wetlands
15	95	Emergent Herbaceous Wetlands

Labels' distribution: Training Set

Labels' overview

Labels' distribution: Validation Set

Labels' overview-RGB

Labels' distribution: Test Set

18/4/2022 47th ICASSP Conference, Singapore, May 2022

Experimental Setup

Cross-Validated Parameters

- <u>#Stack-of-layers</u> in each architecture
 (i.e. 2, 3, 4)
- <u>Spatial patch-size</u> of training samples (i.e. 5x5, 7x7)

Deep Learning Models

- <u>2D-CNN</u>: Exploit spatial info
- <u>3D-CNN-T</u>: Exploit spatial & temporal info
- <u>3D-CNN-S</u>: Exploit spatial & spectral info
- **4D-CNN (Proposed)**: Exploit spatial & spectral & temporal info

Employed Platforms

- <u>Software</u>: Python, Tensorflow, Keras
- <u>Hardware</u>: NVIDIA Quadro P4000 (8Gb RAM)

Comparison ML and S-o-t-A Models

- Support Vector Machines (Gaussian Kernel)
- k-Nearest Neighbors (k=5)
- 3D-CNN [8]

^[8] Shunping Ji, Chi Zhang, Anjian Xu, Yun Shi, and Yulin Duan, "3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images," *Remote Sensing*, Vol. 10, No. 1, pp. 75, 2018.

4D-CNN Architectures Parameter Tuning

- **Goal**: Assess the performance of the CNN models relative to:
 - The number of stack-of-layers they consist of
 - The spatial patch-size they are trained with
- <u>4D-CNN model</u> achieves an accuracy <u>improvement of up to 8.36%</u> over the second best model (89.16% vs 80.80%)!
- <u>4D-CNN model converges faster</u> to higher classification accuracy value
- <u>4D-CNN model less prone to over-fitting issues</u>

18/4/2022 47th ICASSP Conference, Singapore, May 2022

Comparison to S-o-t-A & ML Methods

- Goal: Compare best CNN models with S-o-t-A and ML methods
- <u>4D-CNN model</u> achieves an F1-Score <u>improvement of up to 12.44%</u> over the second best model (77.96% vs 65.52%) → <u>Class-imbalance robustness</u>
- <u>4D-CNN model</u> is ~7 <u>slower</u> than the second best model (~1.8hrs vs ~15mins)
- <u>4D-CNN model</u> ends up with <u>clear segmented regions</u> w.r.t. ground-truth labels

18/4/2022 47th ICASSP Conference, Singapore, May 2022

PART A: Motivation

- a. Remote Sensing Data Classification
- b. Multi-Spectral & Multi-Temporal Imaging

PART B: Proposed Method

- a. 4D-Convolutional Neural Networks
- b. Multi-Temporal Remote Sensing Land-Cover Classification
- c. 4D Model Architecture

PART C: Experimental Evaluation

- a. Dataset Description-Dataset Visualization
- b. Experimental Setup
- c. Experimental Results

PART D: Conclusions and Future Directions

Acknowledgments

Conclusions & Future Directions

- Efficient classification of MT-RS data via 4D-CNNs
- Clear improvements over lower-dimensional CNNs, machine

learning and state-of-the-art methods

• **Robustness** towards class-imbalance regimes

4D-Convolutional Neural Networks

- Effective exploitation of higher-order correlations without any information loss
- End-to-end learning of spatio-spectro-temporal features at the same time
- Computational burden not prohibitive

Future Work

 \blacktriangleright Ameliorate implementation \rightarrow Faster models

Acknowledgements

This work was funded by the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Innovation (GSRI), under the HFRI Faculty Grant 1725 (V4-ICARUS), and by the Calchas project (contract no.842560) of the H2020 Framework Program of the European Commission