
M. Giannopoulos, G. Tsagkatakis and P. Tsakalides

Signal Processing Lab, Institute of Computer Science - FORTH, Crete, Greece

Computer Science Department, University of Crete, Crete, Greece

4D Convolutional Neural Networks for Multi-Spectral and

Multi-Temporal Remote Sensing Data Classification

Conclusions
 Efficient classification of MT-RS data via 4D-CNNs

Clear improvements over lower-dimensional CNNs, 

machine learning and state-of-the-art methods

Robustness towards class-imbalance regimes
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Experimental Setup
Dataset Description: IEEE GRSS Data Fusion Contest dataset
 Landsat-8 MS imagery (9 spectral bands), collected once a year (2013-2016)

 USGS NLCD labels of 2016, 15 different land-cover classes (spatial resolution=30m)

 2250 different tiles over Maryland, USA

 Pre-processing steps
 Selection of a tile with no undefined label values

 Spatial padding & sub-sampling to create MT-RS imagery of spatial size 256x256

 Spatial patch-extraction around each pixel, across all spectral bands & time-instances

 Created data: 256x256=65536 samples, of size (p,p,9,4) each

 Data-split: Training/Validation/Test  60%/20%/20%, random

 Platforms
 Software: Python-Tensorflow-Keras, Hardware: NVIDIA Quadro P4000 (8Gb RAM)

Motivation
 Multi-Spectral (MS) & Multi-Temporal

(MT) imaging

 High-dimensional data, time-series
 Capture multi-dimensional dependencies & 

correlations

 Extend current CNN architectures

 Remote Sensing (RS) data 

classification
 Semantic segmentation

 Land-cover classification, flood detection

 Physical characteristics monitoring

4D-CNN for MT-RS Land-Cover Classification
 Training samples: Overlapping 4D patches around each pixel of raw MT-RS imagery

 Model architecture: Fully-Convolutional (FC) network
 No need for considering scaling/translation factors

 FC networks perform remarkably in similar tasks (e.g. Hyper-Spectral pixel-level classification)

 Model topology
 Stacks of (Conv-BN-ReLU) layers

 Kernel size equal to 3 across every dimension, “same” padding

 Loss-function: Categorical cross-entropy, Optimizer: Adam

 Batch-size=128, Epochs: 100

Comparison to State-of-the-Art and 

Machine Learning Methods

Contributions
 Introduction of 4D-CNNs for MT-RS 

land-cover classification

 Effective exploitation of higher-order 

correlations without any information 

loss

 End-to-end learning of spatio-spectro-

temporal features at the same time

 Demonstration of the 4D-CNN 

superiority over lower-dimensional 

CNNs and state-of-the-art methods

Poster Number: CI-2.4

Proposed Method-Stacked Convolution
 Main objective: Perform 4D convolution

 How: Stacking multiple sequences of 3D convolutions along the last dimension

 Why going stacked: Fast GPU-based implementation, using Tensorflow primitives

 Is it feasible? Yes
 Convolution: Linear operation  Summation order can change

 Implementation: Further re-arrangement of sums’ indices  Not separable convolution

 Also applied in semantic segmentation and video classification tasks

Model Accuracy Time F1-Score

k-NN 0.7443 0.000 0.5747

SVM-Gaussian 0.5945 2.006 0.4995

3D-CNN [8] 0.7097 6.003 0.5090

2D-CNN 0.6049 4.928 0.3624

3D-CNN-T 0.8080 14.558 0.6509

3D-CNN-S 0.7953 27.435 0.6552

4D-CNN 0.8916 107.619 0.7796

4D-CNN Parameter Tuning
 Input data dimensionality impact
 2D-CNN: Exploit only spatial information

 3D-CNN-T: Exploit spatial & temporal information

 3D-CNN-S: Exploit spatial & spectral information

 4D-CNN: Exploit spatial & spectral & temporal information

Hyper-parameter optimization
 #Stack-of-layers in each CNN architecture (i.e. 2, 3, 4)

 Spatial patch-size of training samples (i.e. 5x5, 7x7)
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