### **Poster Number: CI-2.4**

# **4D Convolutional Neural Networks for Multi-Spectral and Multi-Temporal Remote Sensing Data Classification**

M. Giannopoulos, G. Tsagkatakis and P. Tsakalides

Signal Processing Lab, Institute of Computer Science - FORTH, Crete, Greece **Computer Science Department, University of Crete, Crete, Greece** 



# Motivation

**INSTITUTE OF COMPUTER SCIENCE** 

- Multi-Spectral (MS) & Multi-Temporal (MT) imaging
- > High-dimensional data, time-series
  - Capture multi-dimensional dependencies & correlations
  - Extend current CNN architectures
- Remote Sensing (RS) data classification
  - Semantic segmentation

# Contributions

- Introduction of 4D-CNNs for MT-RS land-cover classification
- Effective exploitation of higher-order correlations without any information **IOSS**
- End-to-end learning of spatio-spectrotemporal features at the same time
- Demonstration of the 4D-CNN

# **4D-CNN Parameter Tuning**

- > Input data dimensionality impact
  - 2D-CNN: Exploit only spatial information
  - 3D-CNN-T: Exploit spatial & temporal information
  - 3D-CNN-S: Exploit spatial & spectral information
  - 4D-CNN: Exploit spatial & spectral & temporal information

#### > Hyper-parameter optimization

- #Stack-of-layers in each CNN architecture (i.e. 2, 3, 4)
- Spatial patch-size of training samples (i.e. 5x5, 7x7)

- Land-cover classification, flood detection
- Physical characteristics monitoring

superiority over lower-dimensional CNNs and state-of-the-art methods

## **Proposed Method-Stacked Convolution**

- Main objective: Perform 4D convolution
- $\succ$  How: Stacking multiple sequences of 3D convolutions along the last dimension

$$y_{k,l,m,n} = f\left(\sum_{c}^{C_{in}} \sum_{s=0}^{S-1} \sum_{t=0}^{T-1} \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} w_{i,j,t,s} x_{c,(k+i)(l+j)(m+t)(n+s)} + b_{i,j,t,s}\right)$$
$$= f\left(\sum_{s=0}^{S-1} \left[\sum_{c}^{C_{in}} \sum_{t=0}^{T-1} \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} w_{i,j,t,s} x_{c,(k+i)(l+j)(m+t)(n+s)}\right] + b_{i,j,t,s}\right)$$
$$= f\left(\sum_{s=0}^{S-1} C_{3D} + b_{i,j,t,s}\right)$$

- > Why going stacked: Fast GPU-based implementation, using Tensorflow primitives > Is it feasible? Yes
  - Convolution: Linear operation  $\rightarrow$  Summation order can change
- Implementation: Further re-arrangement of sums' indices  $\rightarrow$  Not separable convolution



### **4D-CNN for MT-RS Land-Cover Classification**

 $\succ$  <u>Training samples</u>: Overlapping 4D patches around each pixel of raw MT-RS imagery



> Model architecture: Fully-Convolutional (FC) network

- No need for considering scaling/translation factors
- FC networks perform remarkably in similar tasks (e.g. Hyper-Spectral pixel-level classification)
- > Model topology
  - Stacks of (Conv-BN-ReLU) layers
  - Kernel size equal to 3 across every dimension, "same" padding Loss-function: Categorical cross-entropy, Optimizer: Adam Batch-size=128, Epochs: 100

# **Comparison to State-of-the-Art and Machine Learning Methods**

| Model        | Accuracy | Time    | F1-Score |
|--------------|----------|---------|----------|
| k-NN         | 0.7443   | 0.000   | 0.5747   |
| SVM-Gaussian | 0.5945   | 2.006   | 0.4995   |
| 3D-CNN [8]   | 0.7097   | 6.003   | 0.5090   |
| 2D-CNN       | 0.6049   | 4.928   | 0.3624   |
| 3D-CNN-T     | 0.8080   | 14.558  | 0.6509   |
| 3D-CNN-S     | 0.7953   | 27.435  | 0.6552   |
| 4D-CNN       | 0.8916   | 107.619 | 0.7796   |



# **Experimental Setup**

- > Dataset Description: IEEE GRSS Data Fusion Contest dataset
  - Landsat-8 MS imagery (9 spectral bands), collected once a year (2013-2016)
  - USGS NLCD labels of 2016, 15 different land-cover classes (spatial resolution=30m)
  - 2250 different tiles over Maryland, USA

#### > Pre-processing steps

- Selection of a tile with no undefined label values
- Spatial padding & sub-sampling to create MT-RS imagery of spatial size 256x256
- Spatial patch-extraction around each pixel, across all spectral bands & time-instances
- Created data: 256x256=65536 samples, of size (p,p,9,4) each
- Data-split: Training/Validation/Test  $\rightarrow$  60%/20%/20%, random

#### > Platforms

<u>Software</u>: Python-Tensorflow-Keras, <u>Hardware</u>: NVIDIA Quadro P4000 (8Gb RAM)

## Conclusions

- Efficient classification of MT-RS data via 4D-CNNs
- Clear improvements over lower-dimensional CNNs, machine learning and state-of-the-art methods
- > **Robustness** towards class-imbalance regimes

# Acknowledgments

This work was funded by the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Innovation (GSRI), under the HFRI Faculty Grant 1725 (V4-ICARUS), and by the CALCHAS project (contract no.842560) of the H2020 Framework Program of the European Commission.