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Motivation

Explore the applicability of Transformer to 
piano transcription problem
Other research fields, like speech processing, natural language processing, have moved towards 
Transformer architectures–

Can we get the performance increase on music transcription problem too?
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Baseline System[1]: Overview

Procedure: 

1. First, task-specific neural networks recognize note-element on frame-level; 

2. then, note-level results are calculated through a search algorithm
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Network for each subtask: CNN-GRU, Same structure for every subtask

Audio input: Log-mel spectrogram

Output of each branch: Does this element exist, on a specific timestep, of a specific pitch
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Evaluation 1/2: performance on subtasks

Result: 

⚫Our model is better at velocity task, with relative 6.3% lower MAE;

⚫But not for the other three subtasks



Model: Baseline + velocity Transformer

Afterward

Switch CNN-GRU to CNN-Transformer on velocity branch, to observe the impact on overall 
transcription performance.
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Evaluation 2/2: transcription performance

Performance: 

- Better than baseline model on 
both frame-level and note-level 
metrics

- 2nd best frame-level multipitch 
estimation result among SOTA 
models

- Better when testing with out-of-
domain data
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Compare with generic Transformer[4]

Performance: 

- Slightly lower result on two note-level metrics

- Ours has higher onset & pitch score

- Provide frame-level output, may facilitate other tasks

[4] Hawthorne, Curtis, et al. “Sequence-to-Sequence 
Piano Transcription with Transformers.” Proceedings of 
the 22nd International Society for Music Information 
Retrieval Conference, ISMIR 2021, Online, November 7-12, 
2021, edited by Jin Ha Lee et al., 2021, pp. 246–53, 
https://archives.ismir.net/ismir2021/paper/000030.pdf.
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Main Takeaways

⚫ CNN-Transformer does better on velocity task—capturing long-range dependencies 
benefits the velocity estimation task

⚫ A piano transcription system with competitive note-level results, while also provide decent 
frame-level result to detect note elements

Possible future direction: 
⚫How well this model perform on transcription of other instruments?

⚫Multitask setup?

⚫Can we build semi-/self-supervised learning transcription models?
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