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Bias in Pronunciation Assessment

• In pronunciation assessment (PA) an assessor declares the proficiency of a speaker using a 
pronunciation reference.

• The variations in second language (L2) speech are likely to cause a bias in the assessor towards 
the speaker [1].

• The bias in PA is a matter of inter-rater reliability attesting the lack of ground truth.



A Model for the Assessor Bias

𝐴η 𝑂 𝑤 = 𝐴 𝑂 𝑤 + 𝑏𝜂 𝑂 𝑤

𝐴 𝑂 𝑤 = 

𝜂∈𝐻

𝐴𝜂 𝑂 𝑤 + 𝑏𝜂 𝑂 𝑤

Where:

𝑂 𝑤 : Speech segment related to prompt w.
η : A pronunciation assessor in set 𝐻.

𝐴η 𝑂 𝑤 : The pronunciation scoring function used by assessor η.

𝐴 𝑂 𝑤 : The assessor independent scoring function.

𝑏𝜂 𝑂 𝑤 : The η specific bias function.



Mispronunciation Detection

𝑃 ȁ𝐸𝑟𝑟𝑜𝑟 0 𝑤 = 1 − 𝑃(𝒍 = 1ȁ𝑟, 𝑂 𝑤 )

𝑃 𝒍 = 1ȁ𝑟, 𝑂 𝑤 ≅ෑ

𝑖

𝑃 𝑙𝑖 = 1ȁ𝑟𝑖 , 0
(𝑤)

Where:
𝒓 = {𝑟𝑖; 𝑖 = 1,… , 𝑅} : a phoneme sequence assumed canonical.
𝒍 = {𝑙𝑖; 𝑖 = 1,… , 𝑅} : a binary correctness indicator where 𝑙𝑖 = 1 if 

𝑟𝑖 is marked as correct.



• The model for the assessor bias is 
implemented on a dual model for detecting 
mispronounced segments [2]. 

• Each branch estimates                        via:

• Sequence encoding
• BDLSTM + Additive self-attention [3]

• Multilabel Classification
• Deep feedforward network

Attention-Based Segmental Incorrectness Model (ASIM)

𝑃 𝑙ȁ𝑟, 𝑂 𝑤

Sigmoid



Attention-Based Segmental Incorrectness Model (ASIM) (2)

Each branch estimates                           to obtain:𝑃 𝑙ȁ𝑟, 𝑂 𝑤

AB

𝑃 𝑙ȁ𝑟, 𝑂 𝑤 , η = 𝑃 𝑙𝐴ȁ𝑟, 𝑂
𝑤 + 𝑃 𝑙𝑏ȁ𝑟, 𝑂

𝑤 , η

Sigmoid



Experiment: Pronunciation Error Detection

• DATA: INA set from the ITSLANG Corpus of L2 prompted speech from ITSLANG BV [4].

• 193 words and sentences
• 230 speakers (early teens)
• 6 hours annotated for mispronunciation at phoneme level by 3 professionals 𝑎1, 𝑎2 & 𝑎3

(agreement shown below).
• 85% for train and 15% for test.
• No speaker overlap.
• Balanced across sex, age and proficiency levels.



Experiment: Pronunciation Error Detection (2)

• The sequence 𝒓 = {𝑟𝑖; 𝑖 = 1, … , 𝑅} comes from forced-alignment.
• DNN-HMM acoustic model trained on WSJCAM0 + 46hrs ITSL ∉ INA

• Segments 𝑂(𝑤):
• Sliding window of length 0.5s with 0.05s stride
• Segments contained a 𝜇 = 3.46 and 𝜎 = 1.54 annotated phonemes.

• Only phonemes contained within 2 frames in each 𝑂(𝑤) where considered for 𝒓 and 𝒍.

• The model was scored on precision (P), recall (R) and F1 score on detecting mispronounced 
segments



Results: Pronunciation Error Detection

The model performed better at predicting 𝑎3 while 𝑎2 showed the worst metrics.



Experiment: Sensitivity to Assessor Tag

The sensitivity of B to tag η scoring the data using the same previously unseen dummy η𝑑 for all 
annotators.



Result : Sensitivity to Assessor Tag

• The model shows an overall decay in performance when using the wrong        (top) compared to 
the matching η scores (bottom).



Experiment: Similarity Between A and MaxVoting

• The output of A was scored against each assessor and a MaxVoting reference (MAX).
• MaxVoting is often used as inter-annotator agreement.



Result: Similarity Between A and MaxVoting

• The A output was better at scoring 𝑎3 than MAX.



Analysis of  Normalised Attention Curves

• Normalised Attention weights (blue)

• Correctness Label (orange)
• Correct = High position
• Incorrect = Low Position

𝑨𝑴𝑨𝑿

𝐵𝑎2

𝐵𝑎3



Conclusion

• This work introduced an interpretable model for automatic PA consisting of an assessor 
independent and a bias term, implemented using a pair of ASIMs A and B.

• Model B was sensitive to η and would decrease in its performance considerably if the wrong 
assessor tag was used.

• Model A was more similar to assessor 𝑎3 than to the MAX reference when evaluated on its own.

• The disagreement between assessors could be observed from the attention curves in B.
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