Adversarially-Trained Nonnegative Matrix Factorization

Nonnegative Matrix Factorization

• Given a nonnegative data matrix $\mathbf{V} \in \mathbb{R}^{F \times N}_+$, approximate $\mathbf{V} \approx$ **WH** where $\mathbf{W} \in \mathbb{R}^{F \times K}_+$ (basis) and $\mathbf{H} \in \mathbb{R}^{F \times N}_+$ (coefficients). To find such a decomposition, one solves

$$\min_{\mathbf{W},\mathbf{H}\geq\mathbf{0}}\|\mathbf{V}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2}$$

where $\mathbf{A} \geq \mathbf{0}$ means \mathbf{A} 's entries are nonnegative.

- Motivation: Improve the predictive performance of NMF using adversarial training for matrix completion tasks.
- Main Contribution: Derive efficient algorithms for updating the adversary and (\mathbf{W}, \mathbf{H}) . Demonstrate the superior performance of adversarially-trained NMF or AT-NMF over other methods on matrix completion tasks for three benchmark datasets.

Formulation of AT-NMF

• Consider an adversary adds an *arbitrary* matrix $\mathbf{R} \in \mathbb{R}^{F \times N}$ to \mathbf{V} to maximize the dirvergence between V and WH, AT-NMF is formulated as

 $\min_{\mathbf{W},\mathbf{H}\geq\mathbf{0}} \max_{\mathbf{R}\in\mathcal{R}} \|\mathbf{V}+\mathbf{R}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2}$

where the constraint set $\mathcal{R} := \{\mathbf{R} : \|\mathbf{R}\|_{\mathrm{F}}^2 \leq \epsilon, \mathbf{V} + \mathbf{R} \geq \mathbf{0}\}.$

- $\epsilon > 0$ is a constant indicating the adversary's power.
- To relax the probelm, dualize $\|\mathbf{R}\|_{\mathrm{F}}^2 \leq \epsilon$ with a Lagrange multiplier $\lambda > 0$, AT-NMF becomes

 $\min_{\mathbf{W},\mathbf{H}\geq\mathbf{0}} \max_{\mathbf{R}:\mathbf{V}+\mathbf{R}\geq\mathbf{0}} \|\mathbf{V}+\mathbf{R}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2} - \lambda \|\mathbf{R}\|_{\mathrm{F}}^{2}.$

AT-NMF Algorithm

• Update of R

-Let $\hat{\mathbf{V}} = \mathbf{W}\mathbf{H}$, the inner maximization problem can be rewritten as a minimization problem as

$$\mathbf{R}^* = \underset{\mathbf{R}:\mathbf{V}+\mathbf{R}\geq\mathbf{0}}{\operatorname{arg\,min}} - \|\mathbf{V}+\mathbf{R}-\hat{\mathbf{V}}\|_{\mathrm{F}}^2 + \lambda \|\mathbf{R}\|_{\mathrm{F}}^2$$

- The objective decomposes into the sum of FN independent terms

$$g(\mathbf{R}) = \sum_{f,n}^{F,N} \left[-(v_{fn} + r_{fn} - \hat{v}_{fn})^2 + \lambda r_{fn}^2 \right].$$

-It suffices to minimize each term inside over r_{fn} . By re-arranging:

$$\min_{r_{fn}:v_{fn}+r_{fn}\geq 0} (\lambda - 1)r_{fn}^2 - 2r_{fn}(v_{fn} - \hat{v}_{fn})$$

Ting Cai¹, Vincent Y. F. Tan², Cédric Févotte³

¹ University of Wisconsin-Madison, ² National University of Singapore, ³ IRIT Université de Toulouse

AT-NMF Algorithm (cont)

 $-\lambda \in [0,1]$ leads r_{fn}^* to ∞ . Choose $\lambda > 1$, the update of **R** is

$$\mathbf{R} = \max\left\{\frac{\mathbf{V} - \hat{\mathbf{V}}}{\lambda - 1}, -\mathbf{V}\right\}$$

• Update of (\mathbf{W}, \mathbf{H}) -Regard $\mathbf{U} := \mathbf{V} + \mathbf{R}^*$, by Majorization-Minimization (MM) algorithm, $\mathbf{H} \leftarrow \mathbf{H} \cdot \frac{\mathbf{W}^{\top} \mathbf{U}}{\mathbf{W}^{\top} \mathbf{W} \mathbf{H}} \quad \text{and} \quad \mathbf{W} \leftarrow \mathbf{W} \cdot \frac{\mathbf{U} \mathbf{H}^{\top}}{\mathbf{W} \mathbf{H} \mathbf{H}^{\top}}$

• Initialization of (\mathbf{W}, \mathbf{H})

-Sample each entries independently from Half-Normal distribution ($\gamma = 1$),

-Run 5 standard MM steps on V to obtain W_{init} and H_{init} .

• Stopping Criteria of AT-NMF

 $-(\mathbf{W}^{(o,i)},\mathbf{H}^{(o,i)})$ denotes the iterate of (\mathbf{W},\mathbf{H}) at the o^{th} outer iteration and i^{th} inner iteration and $\hat{\mathbf{V}}^{(o,i)} := \mathbf{W}^{(o,i)} \mathbf{H}^{(o,i)}$. ε_{in} and ε_{out} are positive constants. ner optimization once the inner iteration i satisfies -Terminate the in

$$\frac{\hat{\mathbf{V}}^{(o,i+1)} - \hat{\mathbf{V}}^{(o,i)}}{\hat{\mathbf{V}}^{(o,i)}} \bigg\|_{\mathbf{F}} < \varepsilon_{\mathrm{in}}$$

-Terminate the entire optimization once the outer iteration o satisfies

$$\left\| \frac{\hat{\mathbf{V}}^{(o+1,i)} - \hat{\mathbf{V}}^{(o,i)}}{\hat{\mathbf{V}}^{(o,i)}} \right\|_{\mathbf{F}} < \varepsilon_{\text{out}}$$

Synthetic Dataset

• $\alpha \in \{0.1, 0.2, \cdots, 0.8, 0.9\}$ denotes the fraction of held-out entries. $\Gamma \subset$ $\{1, \dots, F\} \times \{1, \dots, N\}$ is the set of held-out entries of V. \hat{v}_{fn} is the prediction of v_{fn} . Our performance metric is the root mean-squared error (RMSE)

$$RMSE := \sqrt{\frac{1}{1}}$$

- Systhetic dataset of F = 100, N = 50, and K = 5.
- RMSE of Synthetic dataset

ANMF **AT-NMF**(2)**AT-NMF** (3)NMF 5.41 ± 0.12 $\mathbf{5.11} \pm \mathbf{0.03}$ $0.4 + 5.62 \pm 0.03 + 6.92 \pm 0.17$ $\mathbf{5.32} \pm \mathbf{0.09}$ 5.54 ± 0.08 $\mathbf{6.05} \pm \mathbf{0.03}$ 0.5 6.41 ± 0.01 7.44 ± 0.09 6.27 ± 0.11 6.47 ± 0.07 $\mathbf{6.39} \pm \mathbf{0.03}$ 6.74 ± 0.02 7.61 ± 0.09 0.6 7.99 ± 0.06 7.02 ± 0.04 $\mathbf{6.94} \pm \mathbf{0.01}$ 7.30 ± 0.0 8.30 ± 0.06 7.87 ± 0.01 7.69 ± 0.04 $\mathbf{7.61} \pm \mathbf{0.03}$ 0.8 $0.9 \quad 8.45 \pm 0.01 \quad 8.58 \pm 0.06$ $\mathbf{8.34} \pm \mathbf{0.02}$ 8.44 ± 0.02

RMSE :=
$$\sqrt{\frac{1}{|\Gamma|} \sum_{(f,n)\in\Gamma} (v_{fn} - \hat{v}_{fn})^2}$$

Poster ID: 9296

5.42 ± 0.04 5.18 ± 0.02 5.53 ± 0.02 7.10 ± 0.02 7.71 ± 0.00	T-NMF (5)
5.18 ± 0.02 5.53 ± 0.02 7.10 ± 0.02 7.71 ± 0.00	5.20 ± 0.02
$5.18 \pm 0.02 \\ 5.53 \pm 0.02 \\ 7.10 \pm 0.02 \\ 7.71 \pm 0.00 \\ 8.35 \pm 0.02$	
7.10 ± 0.02 7.71 ± 0.00	
7.71 ± 0.00	
	7.10 ± 0.02
8.35 ± 0.02	
	8.35 ± 0.02

	CBC	CL Data	set
 N = 2429 facia Parts learnt wh 	<u> </u>	h $F = 361$ g	oixels.
	NMF	AT-NMF $\lambda = 2$	AT-NM

	· · ·	-	<u> </u>	1.2	•	-
54.9		37	÷.			
•	1.2	+	5	1	e g	-16
t,	-		A.	-		. •
4		•	.!.		1.1	

$\lambda = 2$				A	Т-	N	٩F	λ	=
-	.	1		÷	4	- 23		Ę.	1
•	Ċ.	i.		۰ Č .	1	÷		23	3
	- 14	. E		÷ .	$\hat{\alpha}^{(i)}$	ੁ	4 16.	3	a.
1.		1			1	Ś.	ો.	÷.,	8
1	da,	t		5 10	5	-		2.5	
	1.1) T a	1	1	2.5	. . .	, A.,		
1	1	sine?			1.4	5	10	1	1

• Image Restoration by AT-NMF

Fig. 3: (a) Original Imgage \mathbf{V} ; (b) Masked training image (missing pixels in red) \mathbf{V} ; (c) Adversary's added-on masked image R^* ; (d) Adversarially trained masked image $\mathbf{V} + R^*$; (e) Restored image using AT-NMF; (f) Restored image using NMF when $\alpha = 0.2$ and $\lambda = 2$.

• Training losses when $\alpha = 0.5$

Hyperspectral Dataset

- It includes the Moffet and Madonna datasets with F = 165 and F = 160 respectively and N = 2500.
- Effect of λ on the RMSE

