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Nonnegative Matrix Factorization

•Given a nonnegative data matrix V ∈ RF×N
+ , approximate V ≈

WH where W ∈ RF×K
+ (basis) and H ∈ RF×N

+ (coefficients). To
find such a decomposition, one solves

min
W,H≥0

∥V −WH∥2F
where A ≥ 0 means A’s entries are nonnegative.

•Motivation: Improve the predictive performance of NMF using ad-
versarial training for matrix completion tasks.

•Main Contribution: Derive efficient algorithms for updating the
adversary and (W,H). Demonstrate the superior performance of
adversarially-trained NMF or AT-NMF over other methods on matrix
completion tasks for three benchmark datasets.

Formulation of AT-NMF

•Consider an adversary adds an arbitrary matrix R ∈ RF×N to V to
maximize the dirvergence between V and WH, AT-NMF is formu-
lated as

min
W,H≥0

max
R∈R

∥V +R−WH∥2F

where the constraint set R :=
{
R : ∥R∥2F ≤ ϵ,V +R ≥ 0

}
.

• ϵ > 0 is a constant indicating the adversary’s power.

•To relax the probelm, dualize ∥R∥2F ≤ ϵ with a Lagrange multiplier
λ > 0, AT-NMF becomes

min
W,H≥0

max
R:V+R≥0

∥V +R−WH∥2F − λ∥R∥2F.

AT-NMF Algorithm

•Update of R

–Let V̂ = WH, the inner maximization problem can be rewritten
as a minimization problem as

R∗ = argmin
R:V+R≥0

−∥V +R− V̂∥2F + λ∥R∥2F

–The objective decomposes into the sum of FN independent terms

g(R) =

F,N∑
f,n

[
−(vfn + rfn − v̂fn)

2 + λr2fn
]
.

– It suffices to minimize each term inside over rfn. By re-arranging:

min
rfn:vfn+rfn≥0

(λ− 1)r2fn − 2rfn(vfn − v̂fn)

AT-NMF Algorithm (cont)

–λ ∈ [0, 1] leads r∗fn to ∞. Choose λ > 1, the update of R is

R = max

{
V − V̂

λ− 1
,−V

}
•Update of (W,H)

–Regard U := V +R∗, by Majorization-Minimization (MM) algorithm,

H← H · W⊤U

W⊤WH
and W←W · UH⊤

WHH⊤

• Initialization of (W,H)

– Sample each entries independently from Half-Normal distribution (γ = 1),

–Run 5 standard MM steps on V to obtain Winit and Hinit.

• Stopping Criteria of AT-NMF

– (W(o,i),H(o,i)) denotes the iterate of (W,H) at the oth outer iteration and ith

inner iteration and V̂(o,i) := W(o,i)H(o,i). εin and εout are positive constants.

–Terminate the inner optimization once the inner iteration i satisfies∥∥∥∥∥V̂(o,i+1) − V̂(o,i)

V̂(o,i)

∥∥∥∥∥
F

< εin

–Terminate the entire optimization once the outer iteration o satisfies∥∥∥∥∥V̂(o+1,i) − V̂(o,i)

V̂(o,i)

∥∥∥∥∥
F

< εout

Synthetic Dataset

•α ∈ {0.1, 0.2, · · · , 0.8, 0.9} denotes the fraction of held-out entries. Γ ⊂
{1, · · · , F}×{1, · · · , N} is the set of held-out entries of V. v̂fn is the predic-
tion of vfn. Our performance metric is the root mean-squared error (RMSE)

RMSE :=

√√√√ 1

|Γ|
∑

(f,n)∈Γ

(
vfn − v̂fn

)2
• Systhetic dataset of F = 100, N = 50, and K = 5.

•RMSE of Synthetic dataset

CBCL Dataset

•N = 2429 facial images with F = 361 pixels.

•Parts learnt when α = 0.1

• Image Restoration by AT-NMF

Fig. 3: (a) Original Imgage V; (b) Masked training image (missing pixels in red) V; (c)

Adversary’s added-on masked image R∗ ; (d) Adversarially trained masked image V +R∗ ; (e)

Restored image using AT-NMF; (f) Restored image using NMF when α = 0.2 and λ = 2.

•Training losses when α = 0.5

Hyperspectral Dataset

• It includes the Moffet and Madonna datasets with F = 165 and
F = 160 respectively and N = 2500.

•Effect of λ on the RMSE


