amazon alexa

Introduction

- End-to-end (E2E) models have shown great performance on the Automatic Speech Recognition (ASR) task.
- E2E models trained on short training segments do not perform well when decoding long-form speech.
- At the inference stage, overlapping inference (OI) and partial overlapping inference (POI) are proposed to align and concatenate overlapped segments after chopping.
- **Limitations** for OI and POI:
 - 50% overlapping percentage doubles computation cost.
 - OI can not tackle low overlapping percentage due to extra cost from non-overlapped region.
 - POI mitigates the above issue but degrades with low overlapping percentage due to lack of common words.
- Novel Contributions: 1): Voice-Activity-Detection **Overlapping Inference (VADOI)** is proposed to introduce more common words around window boundaries to mitigate alignment confusion. 2): We propose Soft-Match to compensate for mismatch between similar but not identical words to further improve alignment quality.
- VADOI achieves equivalent performance as using 50% overlapping percentage, with 20% computation cost reduction on two simulated long-form datasets.

Ol and POL

- **Goal:** Minimize pseudo word error rate (WER) between consecutive segments.
- 01 Figure 1. Illustration of OI decoding scheme (a) and sample alignment graph (b).

C(*j*,*k*): edit distance between word *j* (from sentence *i*) and word *k* (from sentence *i*+1) n_i : length of sentence i e_sub: matching reward $d_i(j)$: j^{th} word in sentence i Wins, Wdel, Wsub, Wmatch: corresponding costs

- **Con:** Non-overlapped region introduces external insertion and deletion errors.
- Figure 2. Illustration of POI decoding scheme (a) and sample alignment graph (b). • POI

VADO: Voice-Activity-Detection Overlapping Inference For End-to-End Long-Form Speech Recognition Jinhan Wang¹, Xiaosu Tong², Jinxi Guo², Di He², and Roland Maas² wang7875@g.ucla.edu

¹Dept. of Electrical and Computer Engineering, University of California, Los Angeles, USA ²Amazon Alexa, USA

• **Pros:** 1): Marginal costs are nullified, so lower overlapping percentage is applicable. 2): Instead of word-level, alignment can be done on character-level.

• **Cons:** Lower overlapping percentage degrades performance because of insufficient matching reward/common words.

VADO

• **Motivation:** Introduce more common words by preventing chopping segments in the middle of a word. Improve alignment quality by mitigating boundary distortion. • **Proposed VADOI:**

• Segments generated in first stage pass through a VAD. • Starting and end frame are shifted to the closest pause with a length greater than a pre-defined threshold.

- The existence of overlapped region is guaranteed by restricting frame-shifting distance to be within half of the overlapping region length.
- If a long-pause is not found within this range, the threshold for length will be cut in half.
- One special case is the start frame is shifted to right when overlapping percentage is over 40% to prevent triple word-pair.
- Shifted segments are decoded, aligned and concatenated following POI decoding scheme.

Soft-Match

• **Motivation:** Relax the constraint of Eq.2 and Eq.6, such that similar but not identical words will contribute to a moderate matching reward proportional to similarity. • Proposed Soft-Match:

 $e_{sub} = CER(d_i(j), d_{i+1}(k)) \cdot (w_{sub} - w_{match}) + w_{match}$

- Similarity between two words is measured using character error rate (CER) , range from 0 (identical) and 1(completely different).
- \circ CER is projected into a number between w_{sub} and w_{match} . • Example:

Word Pair \ Substitution Cost	wo Soft-Match	Soft-Match
vesome, awesome	-2	-2
looking, booking	1	-1.5714
anime, enemy	1	-0.2

Substitution cost = - matching reward For (looking,booking) and (anime, enemy) pairs, it is more easonable to assign positive rewards because they are omitted from the same acoustic feature.

(120,3.8). Model • Input: 64-dim Log-filterbank Energy (LFBE) • RNN-T model

■ Joint Network: feed-forward layer (activation: tanh) • SpecAugment, FastEmit Lambda=0.005. • **Decoding**: Segments length: 12s Corresponding costs are set same as Fig.1 and Fig.2. • Evaluation Protocols: • WER • Computation Cost:

Table 1. WER(%) and Computation Cost on Various Decoding Schemes on MSLT-Long

WER(%)/Dec

Ovl Percentag

• WER

Experiment

1. Experimental Setup

• Datasets:

• Training: 59k hours of mixed public datasets. • Testing:

- MSLT-long: simulated from MSLT with average duration(s) and standard deviation as (121, 5).
- Lib-Long: concatenated from Librispeech with average duration(s) and standard deviation as
- Encoder: 8x1024 LSTM (layerNorm), 2x16
- FLSTM(windows size: 8, stride: 2)
- Decoder: 2x1024 LSTM

- Decoding Time: how many folds needed to decode
- compared with Baseline/Naive Approach (T)
- Ovl-Inf Time: Absolute duration for alignment and concatenation (sec/utt)

2. Results (OI and POI)

		(Л	P	0I
codi	ing Time/Ovl-Inf Time	word	char	word	char
В	Baseline		20.1/	Γ/ΝΑ	
	0%	16.4/T/NA			
ge	50%	13.6/1.87T/0.88	17.0/1.87T/20.5	13.1/1.87T/0.88	13.2/1.87T/20.5
	30%	14.9/1.37T/0.64	54.5/1.37T/14.86	13.3/1.37T/0.64	13.2/1.37T/14.86
	15%	25.2/1.16T/0.53	71.9/1.16T/12.12	13.6/1.16T/0.53	14.1/1.16T/12.12

• POI outperforms OI because of better margin conditions.

• Word-level alignment yields better results than charlevel one. For char-level alignment, it might because omitted word not in the vocabulary, which introduces additional sub error.

• OI is not compatible with char-level alignment because non-overlapped ratio is increased dramatically under char-level.

- POI has monotonic performance degradation as
 - overlapping percentage decreases.
- Computation Cost:

• Larger overlapping percentage increases decoding time.

• Char-level alignment takes significant amount of extra time for alignment and concatenation because exponentially larger dynamic graph size.

• Word-level POI with 50% overlapping percentage gives the best results but needs additional 87% decoding time.

3. Results (VADOI)

Table 2. WER(%) and Decoding Time of VADOI on MSLT- Table 3. WER(%) and Decoding Time of VADOI on Lib-

5.					iong.				
	Exp	VAD	WER(%)	Decoding Time	-	Exp	VAD	WER(%)	Decoding Time
	0%	No	16.40	Т		0%	No	9.70	Т
0%	070	Yes	14.04	1.05T			Yes	7.50	1.06T
-	50%	No	13.05	1.87 T		50%	No	6.49	1.85T
		Yes	13.07	2.14T			Yes	6.62	2.11T
	30%	No	13.27	1.37T		30%	No	6.79	1.36T
	30%	Yes	13.02	1.50T			Yes	6.58	1.48 T
	15%	No	13.59	1.16T	150/	No	7.28	1.13T	
		Yes	13.27	1.25T		15%	Yes	6.67	1.23T

- extremely scarce.

4. Results (Soft-Match)

,	Table 4.	WER(%) of	VA	DOI with	Soft-Match
	MSLT	WER(%)		Lib	WER(%)
	50%	13.07	_	50%	6.62
	+ Soft	12.99		+ Soft	6.59
	30%	13.02	-	30%	6.58
	+ Soft	13.00		+ Soft	6.57
	15%	13.27	-	15%	6.67
	+ Soft	13.25		+ Soft	6.63

The number is appeared as the same in the paper.

 Incorporating VADOI under 50% overlapping percentage yields slightly worse performance. We believe it is because additional common words around boundaries are not necessary for the case where overlapped region is sufficiently large.

• With VADOI, equivalent performances are obtained by using 30% as using 50% without VADOI. Computation cost is reduced by 20% relatively on both datasets. Empirical analysis shows that mitigating boundary distortion can greatly improve alignment quality by preventing chopping word in the middle. • Performance of using VADOI under 15% is not comparable with using 50%, we hypothesis it is because common words are

 Results with overlapping percentage under 15% are not reported because they start to perform worse than Naive Approach with VADOI.

• Applying Soft-Match constantly yields limited improvement. We suspect it is because the problem expected to be solved by Soft-Match does not prevail.

• The light-weight Soft-Match does not introduce any side effect to the performance and empirical analysis shows it did solve the mis-aligned similar words problem efficiently.

Conclusion

• A comprehensive comparison of OI and POI with various configurations are conducted, and it shows that POI with word-level alignment performs the best.

• We propose VADOI to mitigate boundary distortion, further reduce computation cost. Equivalent performance can be achieved with 20% relative computation cost reduction. • Soft-Match is proposed to tackle mis-aligned similar words.

References