

Acknowled

This work is supported in part by NSF.

Towards Better Meta-Initialization with Task Augmentation for Kindergarten-aged speech Recognition

Yunzheng Zhu, Ruchao Fan, and Abeer Alwan

yunzhengzhu19@g.ucla.edu

Department of Electrical and Computer Engineering University of California, Los Angeles, USA

ction	
ue for kindergarten-aged children. Data scarcity will lead to model overfitting to the	e
earner overfitting. Task-level augmentation is proposed by simulating new ages	
od	
• Minimize this objective function with respect to θ_j to find a suitable adaptation model.	
• X_i^{que} and Y_i^{que} are data samples and corresponding labels in the query set of task i, respectively	
 β is the learning rate for the outer-loop optimizer, and ^vθ_j indicates that only first-order Model-Agnostic Meta-Learning (MAML) is used. After enough training steps N the final model θ_N is regards as the learned 	
 initialization for the unseen test task. Age-based Task Augmentation for MI 	
Two types of overfitting in MI [3]:	•SP i
1. Memorization overfitting	●Tasl
Reason: θ_{j+1} memorizes all tasks and does not rely on support sets for inner-loop adaptation	the •27.5
Solution: Randomly sampling the support set and query set at each step so each sample has equal possibility of participating in either outer or inner loop update.	
2. Learner overfitting:	
Reason: θ_{j+1} is unable to generalize well on the test task T	
Solution: Task augmentation to increase model generalization for the test tasks. We propose age-based task augmentation by simulating new tasks of children's	
speech using time and frequency warping techniques, such as speed perturbation and VTLP.	
tal Setup	
Meta-Initialization (MI)	
•HMM-GMM & HMM-DNN: same as 2a and 2b	• To u • To n
• Task Augmentation (MI):	frequ
\circ VTLP: 3x (0.9, 1.0, 1.1)	•Data
○SP: 3x (0.9, 1.0, 1.1)	•A 51
 Data Augmentation (adaptation): •VTLP: 3x (0.9, 1.0, 1.1) 	
◦SP: 3x (0.9, 1.0, 1.1)	
•SpecAug (on-the-fly):	•Cont
■ 1 Ime masking: ∠ times with maximum width of 8 ■ Frequency masking: & times with maximum width of 5	
Trequency masking. 6 miles with maximum with 01 J	
dement	[1] Fir
gomont	I PMLR

Table 1: % Word error rate (WER) for Data Augmentation (Data Aug) mechanisms on baseline system, metainitialization (MI), and the proposed task augmentation (Task Aug) mechanisms for MI with vocal tract length perturbation (VTLP) and speed perturbation (SP) on the Kindergartenaged development and test sets. SPT stands for supervised pre-training. Raw Aug stands for augmentation within each task without creating new tasks.

Model	Data Aug Type	MI Aug Type	Dev	Test
Baseline	-		53.17	55.01
	SP	-	46.13	43.75
+ Data Aug	VTLP	-	45.42	46.05
	SpecAug	-	56.69	53.70
+ SPT [18]		-	36.27	29.06
+ MI		<u>-</u>	35.21	30.68
Dow Ang		SP	36.62	28.00
+ Kaw Aug	-	VTLP	36.27	30.06
. Tack Aug	1. 	SP	34.86	27.50
+ Task Aug	-	VTLP	34.86	29.06

is better than VTLP as a method to simulate new tasks.

sk dependent augmentation (Task Aug) outperforms augmenting the data within original tasks (Raw Aug).

.5 % WER improvement is achieved on the kindergarten test set with MI and task mentation.

Table 2: % Word error rate (WER) for data augmentation during the adaptation stage with SpecAug, vocal tract length perturbation (VTLP), and speed perturbation (SP) on the Kindergarten development and test sets.

Aug Type (in adaptation stage)	Dev	Test
No Aug	34.86	27.50
SpecAug	32.75	27.01
VTLP	32.39	28.13
SP	33.45	27.75

the test set.

Conclusion

Results

deal with the data scarcity of children's speech, particularly kindergarten-aged, meta-initialization is used to find a good starting point for training the acoustic model. nitigate the overfitting in meta-initialization, particularly learner-overfitting, an age-based task augmentation mechanism is proposed to simulate new ages using time and uency warping techniques.

a augmentation strategies (SP, VTLP) used in the task augmentation stage are not helpful in the adaptation stage. 1% relative WER improvement over the baseline is achieved in the final system.

Future Work

tinue to improve child ASR

end the technique to other low-resource ASR tasks

References

inn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." International Conference on Machine Learning. R, 2017.

[2] Antoniou, Antreas, Harrison Edwards, and Amos Storkey. "How to train your MAML." arXiv preprint arXiv:1810.09502 (2018). [3] Yao, Huaxiu, et al. "Improving generalization in meta-learning via task augmentation." International Conference on Machine Learning. PMLR, 2021.