

Group-wise Feature Selection (GroupFS)

A new problem setting between global feature selection and instance-wise feature selection

Formally, find a mapping for $S : \mathcal{X} \to F$ and a set of feature selectors F = $\{s^1, \ldots, s^K, s^k \in \{0, 1\}^d\}$ such that for almost all $x \in \mathcal{X}$, we have $P(y|\mathbf{x} \odot \mathbf{S}(\mathbf{x})) = P(y|\mathbf{x})$

Assumption space:

- Global FS, |F| = 1; simple and interpretable but not expressive
- Instance-wise FS, $|F| = 2^d$; expressive but lack of global interpretability
- GroupFS, |F| = K; both expressive and interpretable

Related Works

Feature selection using regularized Mixture of Experts (MoE)

- l_2 -penalized maximum-likelihood estimator to select features in MoE [3]
- EM algorithm with coordinate ascent to generate sparse solutions [1]

Limitations:

- Individual regularizer for each predictor, require a complex EM training procedure
- Both papers focus only on linear experts

Proposed method I - INVASE + Clustering

We propose a two-step method for GroupFS

- 1. Train an instance-wise feature selector. Each data sample has an individual feature selector.
- 2. Apply the K-means clustering to all the feature selectors.

Group-wise feature selector: the assigned cluster center.

Proposed method II - GroupFS with Mixture of Experts Selector

Group-wise Feature Selection for Supervised Learning

Qi Xiao ¹ Hebi Li² Jin Tian ² Zhengdao Wang ¹

¹ECpE at Iowa State University

GroupFS-MoE: Feature Importance Score

• $s \in \{0,1\}^d$ is discrete, cannot back-propagate gradient

- Approximation: feature importance score $w \in [0, 1]^d$
- Re-parametrization: $w = sigmoid(v) = \frac{1}{1 + exp(-v)}$
- Feature selector s follows Bernoulli distribution v

 $\pi(s;w) = \prod w_i^{s_i} (1 - w_i)$

GroupFS-MoE: Mixture of Exp

Mixture of K feature selectors with feature important

$$\pi(s|x;\theta,w^1,...,w^K) = \sum_{k=1}^K g_k(x)$$

$$\sum_{k=1}^{K} g_k(x;\theta) = 1, g_k(x;\theta) \in$$

GroupFS-MoE: Gumbel-Softmax Re-parametrization

 $g(x;\theta)$ is one-hot \rightarrow no gradient Solution: Gumbel-softmax Re-parametrization $g_k(x;\theta) = \frac{\exp(\tau^{-1}(\log(o_k) - \sum_{j=1}^K \exp(\tau^{-1}(\log(o_k) - \sum_{j=1}^K \exp(\tau^{-1}(\log(o_k)$ where $b_1, \ldots, b_K \sim \text{Gumbel}(0, 1), o_1, \ldots, o_k$ are the original outputs of g.

Experiments: Synthetic Datasets

$$P(y=1|\mathbf{x}) = \frac{1}{1+d_i(\mathbf{x})}, \mathbf{x}$$

$$d_1(x) = \begin{cases} \exp(x_1 x_2), & x_{11} < 0\\ \exp(\sum_{i=3}^6 x_i^2 - 4), & \text{otherwi} \end{cases}$$

$$d_2(x) = \begin{cases} \exp(x_1 x_2), \\ \exp(-10\sin 2x_7 + 2||x_8|| + x_9 + \exp(-x_1)) \end{cases}$$

$$d_3(x) = \begin{cases} \exp(\sum_{i=3}^6 x_i^2 - 4), \\ \exp(-10\sin 2x_7 + 2||x_8|| + x_9 + \exp(-x_1)) \end{cases}$$

Evaluation metric: Mean Squared Error (MSE), Accuracy (Acc) and Normalized Mutual Information (NMI):

 $\mathsf{NMI}(C_1; C_2) = \frac{2\mathsf{I}(C_1; C_2)}{\mathsf{H}(C_1) + \mathsf{H}(C_2)}$

Syn2:

Syn1:

(1)

Syn3:

²CS at Iowa State University

Synthetic Results

Table 1. Learned GroupFS Feature Selectors for Syn1, Syn2, Syn3

		Syn1			Syn2			Syn3	
Experts	E1	, E2	g	E1	, E2	g	E1	, E2	g
#samples	1617	1717		1621	1713		1621	1713	
×1	1	_	_	1	_	-	.02	.01	_
x2	1	-	_	1	-	_		.02	-
xЗ	_	1	_	.02	.01	_	1	-	-
x4	_	1	-	.01	.01	_	1	-	-
x5	_	1	-	.01	.01	_	1	-	-
х6	_	1	_	.02	.01	.01	1	-	-
x7	.02	-	_	-	1	-	-	1	-
x8	.03	.01	-	-	.99	-	-	1	-
x9	.03	-	-	-	1	-	-	1	-
x10	.03	-	-	-	1	_	-	1	-
×11	.17	1	.21	.02	.05	.27	.99	.99	.33

Table 2. Evaluation of proposed methods on synthetic datasets

	Syn1			Syn2			Syn3	
	NMI MSE	Acc	NMI	MSE	Acc	NMI	MSE	Acc
INVASE+KM GroupFS-MoE	.828 .189 .911 .182	.703 .710	.904 .921	.178 .177	.715 .715	.925 .960	.136 .131	.810 .811

Experiments - Real Datasets

- Boston housing: d = 13, n = 506
- Baseball salary: d = 16, n = 337
- Assumption: two groups of feature selector

		Traini	ng		Test	ing
	Khalili[3] k	asso+ $l_2[1]$ (GroupFS	INV+KM	GroupFS	INV+KM
Boston Baseball	.2044 1.1858	.1989 .2821	.0879 .2371	.0853 .2480	.1863 .3056	.1846 .3417

	R
[1]	Faicel Chamroukhi and Bao-Tuyen Huynh. Regu

- *Statistics*, 38(4):519–539, 2010.
- networks. In International Conference on Learning Representations, 2018.

,⊥]			
witł	n pdf		

$(1-s_i)$	(2

perts	Selector

ance scores $\{w^1,,w^K\}$	
$ heta)\pi_k(s;w^k),$	(3)
$\{0,1\}.$	(4)

$(+ b_k))$	(5)
$(o_j) + b_j))$	(\mathcal{I})
ariainal autouta of	

$\mathbf{x} \in \mathbb{R}^{11}$	(6)
) /ise	(7)
$x_{11} < 0$ $x_{10})), otherwise$	(8)
$x_{11} < 0$ $(x_{10})), otherwise$	(9)

$C_2)$	(10)
$\exists (C_2)$.	

• Compare with feature selection in MoE: Khalili [3] and lasso+ l_2 [1]

Table 3. Discriminator's Mean Square Error (MSE) comparison with Regularized MoE

INV+KM is short for INVASE+KMeans. GroupFS is short for GroupFS-MoE.

leferences

ularized maximum likelihood estimation and feature selection in mixtures-of-experts models. Journal de la société française de statistique, 160(1):57–85, 2019.

[2] Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. Learning to explain: An information-theoretic perspective on model interpretation. In International Conference on Machine Learning, pages 883–892. PMLR, 2018. [3] Abbas Khalili. New estimation and feature selection methods in mixture-of-experts models. *Canadian Journal of*

[4] Claude E. Shannon. A mathematical theory of communication. *Bell System Technical Journal*, 27(3):379–423, 1948. [5] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. Invase: Instance-wise variable selection using neural