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Detection and Classification of 3-D Objects Undergoing
Rigid Transformations

Consider a 3-D object s ∈ {s1, · · · , sK}, and the orbit of equivalent
observations formed by the action of the transformation group
G = SE(3) on s.

The set of possible observations on these equivalent objects is
generally a manifold in the ambient space of observations.
In the presence of observation noise and random sampling patterns of
the point clouds, the observations do not lie strictly on the manifold.
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RTUME for Classification

The Rigid Transformation Universal Manifold Embedding (RTUME)1

provides a mapping from the orbit of observations on some object to
a single low dimensional linear subspace of Euclidean space.

This linear subspace is invariant to the geometric transformations and
hence is a representative of the orbit.

In the classification set-up the RTUME subspace extracted from an
experimental observation is tested against a set of subspaces
representing the different object manifolds, in search for the nearest
class.

1Amit Efraim and Joseph M Francos. “The Universal Manifold Embedding for Estimating Rigid Transformations of Point
Clouds”. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
2019, pp. 5157–5161.
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Rigid Transformation Universal Manifold Embedding
(RTUME)

Let h(x), g(x) be two observations on the same object related by a
rigid transformation:

h(x) = g(Rx+ t) (1)

where h(x), g(x) are evaluated from the raw point cloud
measurements using an SE(3)-invariant function.

We use the matrix representation of SE(3) in homogeneous
coordinates with right multiplication:

D(R, t) =

[
1 tT

0 RT

]
(2)
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RTUME - Matrix Representation

RTUME Matrix

T(h) =


∫
R3

w1 ◦ h(x)dx
∫
R3

x1w1 ◦ h(x)dx . . .
∫
R3

x3w1 ◦ h(x)dx

...∫
R3

wM ◦ h(x)dx
∫
R3

x1wM ◦ h(x)dx . . .
∫
R3

x3wM ◦ h(x)dx

 (3)

{wm}Mm=1 are measurable functions aimed at generating many
compandings of the observation.

The RTUME matrices of h(x), g(x) are related by:

T(h) = T(g)D−1(R, t) (4)

Since T(h) and T(g) are related by a right invertible linear
transformation, the column space of T(g) and the column space of
T(h) are identical.
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Design of the RTUME Operator: TL-GDRUME

Classifier performance highly depends on the choice of the set of
functions composing the UME operator.

Find the functions, that best separates the RTUME representation of
each object from those of the other objects, while minimizing the
distance between observations on the same object.

dpF (〈T(Z)〉, 〈T(X)〉) = 1√
2
||PX −PZ ||F = || sinθ||2 (5)

Using Grassmannian dimensionality reduction and metric learning
scheme we derive TL-GDRUME: An analytic solution for designing
the RTUME operators.
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Level Set Representation

Given an observation X(u),u ∈ R3 the level-set representation of
X(u)is:

X(u) =

Q∑
i=1

qiIXi (u) (6)

where IXi (u) is the indicator function of the level-set of u where
qi−1 ≤ X(u) ≤ qi.

The action of a measurable function wm on the level-set
representation of X(u) is to map qi to wm(qi):

wm(X(u)) =

Q∑
i=1

wm(qi)IXi (u) (7)
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Fundamental Universal Manifold Embedding (FUME)

Using the level-set representation of X(u) each term of the RTUME
matrix T(X) becomes:

Tm,j =
∫
R3 wm ◦X(u)ujdu =

∑Q
i=1wm(qi)

∫
R3

IXi (u)ujdu︸ ︷︷ ︸
FX

i,j

=
∑Q

i=1wm,iF
X
i,j (8)

and
T(X) = WTFX ; WT = {wm,i} ∈ RM×Q (9)

FX = {FX
i,j} ∈ RM×Q is the Fundamental Universal Manifold

Embedding (FUME) matrix of X(u).

Since M ≤ Q the role of W is to transform the subspace
〈FX〉 ∈ Gr(Q, 4)to the subspace 〈GX〉 ∈ Gr(M, 4).
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Grassmannian Dimensionality Reduction

Find W ∈ RQ×M that jointly maps FUME subspaces from a
Grassmannian with higher ambient space dimension to a
Grassmannian with lower ambient space dimension.

{〈Fk〉}Nk=1 ∈ Gr(Q, 4)
Yk=WTFk

−→ {〈Yk〉}Nk=1 ∈ Gr(M, 4) (10)

W is designed such that observations from the same orbit generate
close together subspaces while those from different orbits generate far
apart subspaces.
A sufficient condition that guarantees all 〈Yk〉 are indeed on
Gr(M, 4) is that W has a full column rank, or alternatively, that the
columns of W are orthonormal.
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Metric Learning - Triplet Margin Loss

We employ metric learning with hard-negative mining.

Triplet loss jointly minimizes the distance between a given anchor and
its positive match, while maximizing the distance to the hardest
negative example.

Negative mining is applied both to the anchor and to its positive
match.
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TL-GDRUME Optimization of W

Given a training set of N labeled observations {Xi, ki}Ni=1,
ki ∈ {1, . . .K} and their corresponding FUME matrices {Fi}Ni=1.

Examples are paired to positive (P) and negative (N ) sets according
to their class label, each set contains the indices of the appropriate
examples.

Points on the Grassmann manifold are represented by an orthogonal
basis of the RTUME matrices {WTFi}Ni=1 using QR- decomposition.

Distance between examples is measured by the projection
Frobenius-norm on the Grassmannian:

Di,j(W) = d2pF (〈Qi(W)〉, 〈Qj(W)〉) (11)
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TL-GDRUME Optimization of W

TL-GDRUME Training

min
W∈RQ×M

L(W) =
∑

(i,j)∈P

[
m+Di,j(W)−min

k∈N
Di,k(W)

]
+

+ (12)

[
m+Di,j(W)−min

k∈N
Dj,k(W)

]
+

subject to WTW = IM

Since 〈WTFi〉 ∈ Gr(M, 4), distance values are bounded
Di,j(W) ∈ [0, 4] therefore a typical value for the margin m will be in
this range.

[·]+ = max(0, ·).
We solve an optimization problem on the Stiefel manifold (12) using
manifold optimization toolbox Manopt2.

2Nicolas Boumal et al. “Manopt, a Matlab toolbox for optimization on manifolds”. In: The Journal of Machine Learning
Research 15.1 (2014), pp. 1455–1459.

Y.Haitman, J.M.Francos and L.L.Scharf GDR Using Triplet Loss for UME Classification of 3D Point Clouds 12 / 15



TL-GDRUME Optimization of W

TL-GDRUME Training

min
W∈RQ×M

L(W) =
∑

(i,j)∈P

[
m+Di,j(W)−min

k∈N
Di,k(W)

]
+

+ (12)

[
m+Di,j(W)−min

k∈N
Dj,k(W)

]
+

subject to WTW = IM

Since 〈WTFi〉 ∈ Gr(M, 4), distance values are bounded
Di,j(W) ∈ [0, 4] therefore a typical value for the margin m will be in
this range.

[·]+ = max(0, ·).

We solve an optimization problem on the Stiefel manifold (12) using
manifold optimization toolbox Manopt2.

2Nicolas Boumal et al. “Manopt, a Matlab toolbox for optimization on manifolds”. In: The Journal of Machine Learning
Research 15.1 (2014), pp. 1455–1459.

Y.Haitman, J.M.Francos and L.L.Scharf GDR Using Triplet Loss for UME Classification of 3D Point Clouds 12 / 15



TL-GDRUME Optimization of W

TL-GDRUME Training

min
W∈RQ×M

L(W) =
∑

(i,j)∈P

[
m+Di,j(W)−min

k∈N
Di,k(W)

]
+

+ (12)

[
m+Di,j(W)−min

k∈N
Dj,k(W)

]
+

subject to WTW = IM

Since 〈WTFi〉 ∈ Gr(M, 4), distance values are bounded
Di,j(W) ∈ [0, 4] therefore a typical value for the margin m will be in
this range.

[·]+ = max(0, ·).
We solve an optimization problem on the Stiefel manifold (12) using
manifold optimization toolbox Manopt2.

2Nicolas Boumal et al. “Manopt, a Matlab toolbox for optimization on manifolds”. In: The Journal of Machine Learning
Research 15.1 (2014), pp. 1455–1459.

Y.Haitman, J.M.Francos and L.L.Scharf GDR Using Triplet Loss for UME Classification of 3D Point Clouds 12 / 15



Experimental Setup and Results

Evaluation on ModelNet40 point cloud dataset.

For each class we generated observations that differ by rigid
transformation, additive noise and random sampling.
The class of each observation in the test is determined to be the label
of its nearest neighbor in the training set.
We tested the classification performance under two different noise
statistics and two sampling methods - uniform and non-uniform.

Sampling Method 0.5 MR noise 0.8 MR noise

Uniform
FUME 0.85 0.83

TL-GDRUME 0.93 0.91

Non - Uniform
FUME 0.83 0.81

TL-GDRUME 0.92 0.90

Table: Accuracy comparison of FUME and TL-GDRUME on deformed
ModelNet40 observations, uniformly and non-uniformly sampled, in the presence
of noise.
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Conclusions

We have presented a novel approach for designing the RTUME of 3D
point clouds towards optimizing its performance for detection and
classification tasks.

In the presence of observation noise and challenging sampling
patterns, the observations do not lie strictly on the manifold and the
resulting RTUME subspaces are noisy. Yet, TL-GDRUME provides
highly accurate classification results compared to the naive FUME.
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Thank You
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