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Introduction and Motivation

Canonical Polyadic Decomposition (CPD)

Coupled-LaRGE Algorithm (continued)

Application on EEG, MEG, and Gradiometer data

[ Problem Statement
Model order (rank) estimation of multidimensional data (tensors) corrupted
by additive noise is essential for analysis, i.e., CP decomposition.

[ Observations
= Simultaneously collected data through heterogeneous sensors, i.e.,

biomedical studies, share coupled factors among multiple tensors.
=- This coupling can lead to a better model order estimation.

[ Contributions

= Extension of the rank estimation technique from single tensor (using
HOSVD) to noise-corrupted coupled tensors that share one of their
factor matrices (using coupled HOSVD).

= Improved performance in comparison with classical criteria.
= Application to EEG, MEG Magnetometer, and Gradiometer mea-

O The CP decomposition of the 3-D tensor X € Cl*2xIs with rank R is
defined as

R
X = Zfl(r) o fs" o f3) =Ty p x1 Fy x5 Fy x3 F,
r=1

where matrices F}, € ChxE R, € Cl2*XE Fy ¢ C3*E gre called factor
matrices

0 I r € CH*EXE has 1's on its super-diagonal and rest of the elements
are zero.
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[ Photic Stimulation (IPS): simultaneously recorded 128 EEG electrodes
and 306 MEG channels (MAG + GRAD-1 + GRAD-2).

[ Measurement of individual a-rhythm followed by individual a-frequencies
fa calculation.

[ Closed eyes stimulation: 30 trains of flickering light stimulation (40 pe-
riods of on/off light per train) different frequencies.
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Fig. 8. Experimental Setup and data recording
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Application on EEG, MEG, and Gradiometer data

[ Akaike’s Information Criteria (AlIC)

[ Minimum Description Length (MDL)

[ CORe CONsistency DIAgnostic (CORCONDIA)

3 LineAr Regression of Global Eigenvalues (LaRGE)
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O Next, let us consider the coupled CPD of L coupled N-dimensional ten-
sors X", 1€ {1,..., L}, with the first mode in common

X(()l) =1TZ3 r X1 F1 X2 Fz(l) X3 ... XN Fzs/%) e CMx Mg ...

where F\" € CM:"xR p e {1,... N},
M, denotes the size of the common
dimension for all tensors, R is a

CPD rank satisfying

R < min{ay, M, ... M0y,
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Fig. 4. Coupled CPD of L 3-D terisors,
X(l) = Ig,R X1 F1 X9 FQ(l) X3 F3(l),R =3

[ C-LaRGE computes the geometric mean of the GEVs to create a set of
Coupled GEVs (C-GEVs).

[ When the PESDR (Prediction Error to Standard Deviation Ratio) exceeds
the predefined threshold p for the first time, it indicates the detection of
the rank.

O C-LaRGE PF (penalty function) ensures that the value of o,,_; exceeds
a certain threshold ¢, that allows avoiding the outliers that may lead to
wrong estimates.

O The C-GEVs can also be utilized for the extension of the well known MDL
and AIC techniques for the coupled model order estimation.

O Preprocessing: bandpass filtering from 3 to 40 Hz followed by frequency
domain conversion with DFT.

[ Tensor construction: — EEG, MEG-MAG, MEG-GRAD-1, MEG-GRAD-
2 — tensors with dimensions Channels x Frequency x Trains.

[ Signal Processing Steps: Coupled Rank Estimation with C-LaRGE fol-
lowed by C-SECSI for coupled CPD.
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Fig. 9. Coupled tensors with dimensions Channels x Frequency x Trains.
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Biomedical Application

0 Given: X = Xy + N € CMix- XM~ where X, € CM1x--xMn g the
noiseless data of rank R, and N € CM1x--xMn g gn additive noise ten-
Sor.

HOSVD of X given by
X:S><1U1 ><2U2 X3...><NUN

Fig. 1. HOSVD of a 3-D tensor X = 8§ x; U; x5 Uy x3 Us

Global EigenValues (GEVs) are computed
as the product of the n-mode singular values o™ as

~ 2 :
A,[L.G] = HN (a(”)> i=1,...,M,where M = min{M,},n e {1,...,N}

n=1 2

is the smallest dimension in X.
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3 Profile of the noise Global EigenValues fits an exponential law.

O LaRGE calculates linear approximation of the GEVs on a logarithmic
scale, starting from the smallest noise Global EigenValue.

[ The deviation from this linear regression i.e., the significant gap between
noise GEVs and signal GEVs helps estimating the rank.
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Fig. 5. Global eigenvalues profile at low SNR. Simulation parameters: X €
C20%25%30 rank = 5, SNR = —7dB.
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Fig. 6. Prob. of false negative Py, (p) (top), correct detection Pey(p) (middle),
false positive Py, (p) (bottom).
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Fig. 10. The estimated factor matrices for volunteer No.5 (f, = 10.7 Hz) at stimulation fre-
quency 0.95 f,, and estimated rank R = 3. The results of C-SECSI show that the MEG frequency
mode estimate is not coupled.
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Conclusions

[ Coupled HOSVD of L tensors is expressed as follows
X0 =805, U, xoUP x5...xyUY

O U, € CM1xM1 comes from the SVD of the concatenated 1-mode unfold-

ings of X.
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Fig. 2. Coupled HOSVD

Require: N-way tensors T € CMa X MP s x M)

al(z) +— coupled HOSVD of T®s (mode-1 is coupled),
M = min{ My, ..., M](\i)} Vi \ Singular values from coupled
for/=1,...,L do HOSVD

fori=1,...,M do
|G N n 2
)\E,i] = [[= (Ol(,i))

end for
end for \ Global Eigenvalues (GEV’s) from singular values

fori=1,...,M do
NG = N

AD = 1p 2@ Coupled Global EigenValues (C-GEV’s)
end for

—_

—Coupled AIC = Simulation Parameters

—Coupled MDL

' —Coupled LaRGE PF i X(l)’ X(z), X(3), xXW ¢ C16x16x16

— Coupled LaRGE with same first factor matrix.
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Fig.7. Probability of detection vs. SNR.
C-LaRGE threshold = 0.59
LaRGE PF/C-LaRGE PF threshold = 0.7
Number of trials = 10000

[ Extension of the LaRGE algorithm for multiple noise-corrupted coupled
tensors has been proposed.

[ The proposed coupled global eigenvalues are used to estimate the cou-
pled rank with the C-LaRGE algorithm.

[ Monte Carlo simulations have provided a suitable threshold to be used
for C-LaRGE.

O C-LaRGE method outperforms its uncoupled counterpart as well as other
classical methods, especially in low SNR scenarios.

[ Four coupled tensors from a biomedical experiment have been used, and
the dominant components have been exiracted successfully.
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