Unsupervised data selection for Speech Recognition with contrastive loss ratios

Chanho Park, Rehan Ahmad and Thomas Hain

Speech and Hearing Research Group (SPandH)
The University of Sheffield

2022 IEEE International Conference on Acoustics, Speech and Signal Processing

Motivation

Data selection

- increased amount of unlabelled training data
- negative transfer among multiple domains

Current methods

- confidence score: top of ASR systems, time-consuming
- proxy function: smaller but faster

Aims

- to avoid iterative computations
- to select reduced amount of data while minimising negative transfer

Contrastive representation learning

A contrastive loss function

- maximises the similarity between data representations in a category
- minimises it between data representations in different categories

For representation learning,

- maximises the mutual information of encoded and contextualised embeddings
- predicts the encoded embedding of future k-step based on the context embeddings
- comparing density ratios of positive and negative samples

In this paper, wav2vec¹ model is adopted as a representation learning model

Park et al. (SPandH) Paper #6273 ICASSP 2022 3 / 16

¹S. Schneider, A. Baevski, R. Collobert and M. Auli, "wav2vec: Unsupervised pre-training for speech voiceBase recognition," in *Proc. Interspeech 2019*, Graz, Austria, pp. 3465–3469.

Submodular function

Selecting data from a data pool is to find discrete sets of feasible solutions

$$f: 2^V \to \mathbb{R}$$

A function is submodular if

$$f_A(e) \ge f_B(e)$$
 for all $A \subseteq B \subseteq V$ and $e \in V \setminus B$
where $f_A(e) = f(A \cap \{e\}) - f(A)$

If the function is monotonically nonincreasing, and given a constraint k,

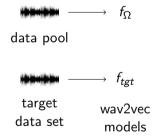
$$\argmax_{|S| \le k} \{f(S)\}$$

Contrastive loss ratios

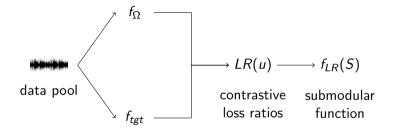
- f_{Ω} : loss function trained on the data pool
- f_{tgt} : loss function trained on a target data set
- ullet α : a number to prevent overflow or underflow
- x_t : an observation at time t

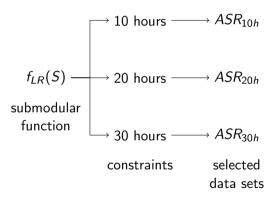
$$LR(u) = \frac{1}{T} \sum_{t=1}^{T} \frac{f_{\Omega}(x_t) + \alpha}{f_{tgt}(x_t) + \alpha}$$

Submodular function


• S: a subset of the data pool

$$f_{LR}(S) = \sum_{u \in S} (LR(u))$$




Contrastive representation learning

Contrastive loss ratios

Data selection

Experimental setup

corpus	hours			
corpus	target	data pool	test	
AMI	1	10	1	
Fisheer (FS)	1	10	1	
Tedtalks (TD)	1	10	1	
Wsjcam0 (WS0)	1	10	1	

Data pool: 40 hours of training data sets for ASR models Target data: 1-hour sets of training data for contrastive loss Test data: 1-hour sets of evaluation data for ASR performance

The numbers of segments selected by the proposed method:

target	selected			
data set	hou 10h	data set		
	3263	3503	3521	AMI
AMI	14	291	1083	FS
	195	1811	2725	TD
	16	1320	3070	WS0
WS0	104	2166	3299	AMI
	0	4	334	FS
	28	1222	3116	TD
	3527	3684	3685	WS0

	Log-likelihood						
	target	hou	hours of subset				
	data set	10h	20h	30h	data set		
-		2023	2810	3222	AMI		
AMI	131	774	1863	FS			
	306	1089	2020	TD			
	1008	2261	3262	WS0			
-		845	2492	3208	AMI		
WS0	4	337	1699	FS			
	57	625	1861	TD			
		2680	3653	3685	WS0		

Given a 10 hours of constraint:

Data selection					
target/	segments		total		
selected	CLR LL		totai		
AMI	3263	2023	3526		
FS	3257	3301	3330		
TD	2773	1110	3244		
WS0	3527	2680	3685		

Given a 10 hours of constraint:

target/	Data selection segments		total	
selected	CLR LL		total	
AMI	3263	2023	3526	
FS	3257	3301	3330	
TD	2773	1110	3244	
WS0	3527	2680	3685	

ASR performance				
target/	WER(%)			
selected	CLR LL			
AMI	31.71	34.51		
FS	39.54	40.02		
TD	28.07	35.19		
WS0	11.14	11.27		

ASR performance on selected data sets

target	10h	20h	30h	40h
AMI	31.71	28.62	27.02	26.69
FS	39.57	37.12	35.49	35.72
TD	28.07	25.54	24.43	24.58
WS0	11.14	9.57	9.32	9.90

Negative transfer

Method	selected	80%	85%	90%	95%	100%
	AMI	26.98	26.79	25.91	26.35	26.69
CLR	FS	35.83	36.96	35.83	35.72	35.72
CLK	TD	24.97	25.25	24.94	24.34	24.58
	WS0	9.66	9.71	9.51	9.66	9.90
	AMI	27.19	26.55	25.78	27.36	26.69
CL	FS	35.02	36.11	35.75	35.50	35.72
	TD	25.09	24.61	24.34	24.59	24.58
	WS0	9.56	9.28	9.66	9.52	9.52

Park et al. (SPandH) Paper #6273 ICASSP 2022 14/16

Conclusion

• By using the proposed method, a training set for automatic speech recognition matching the target data set could be selected.

 ASR models trained on the data sets selected by the proposed method outperformed the model trained on the data pool

 ASR performance could be maintained or improved on the reduced amount of data selected by the method

Park et al. (SPandH) Paper #6273 ICASSP 2022 15 / 16

QnA

