# UNSUPERVISED DATA SELECTION FOR SPEECH RECOGNITION WITH CONTRASTIVE LOSS RATIOS CHANHO PARK, REHAN AHMAD, THOMAS HAIN



University Sheffield.

# SPEECH AND HEARING RESEARCH GROUP (SPANDH), UNIVERSITY OF SHEFFIELD, SHEFFIELD, UK

# INTRODUCTION

Semi-supervised learning has become popular

- an increased amount of training data
- negative transfer in multi-domain data sets
- This paper aims to
  - 1. select training data for speech recognition matching target data from a data pool
  - 2. maintain or improve the performance of ASR systems while minimising negative transfer

# BACKGROUND

#### **Contrastive representation learning** For representation learning,

- maximises the mutual information of encoded and contextualised embeddings
- comparing density ratios of positive and negative samples for future k steps

$$\mathcal{L}_N = -\mathbb{E}_X \left[ log \frac{f_k(x_{t+k}, c_t)}{\sum_{x_j \in X} f_k(x_j, c_t)} \right]$$

### Submodular function

A function  $f: 2^V \to \mathbb{R}$  is submodular if  $f_A(e) \ge f_B(e)$  for all  $A \subseteq B \subseteq V$  and  $e \in V \setminus B$ where  $f_A(e) = f(A \cap \{e\}) - f(A)$ 

If the function is monotonically nonincreasing, and given a constraint k,

> $\arg\max\{f(S)\}$  $|S| \leq k$

# METHODS

#### Loss ratios

 $f_{\Omega}$ : loss function trained on the data pool  $f_{tqt}$ : loss function trained on a target data set  $\alpha$ : a number to prevent overflow or underflow  $x_t$ : an observation at time t

$$LR(u) = \frac{1}{T} \sum_{t=1}^{T} \frac{f_{\Omega}(x_t) + \alpha}{f_{tgt}(x_t) + \alpha}$$

Submodular function S: a subset of the data pool

 $f_{LR}(S) = \sum \left( LR(u) \right)$ 

# DATA SETS

**Data pool** ( $\Omega$ ): 40 hours

| AMI           | 10 hours |  |  |
|---------------|----------|--|--|
| Fisher (FS)   | 10 hours |  |  |
| Tedtalks (TD) | 10 hours |  |  |
| Wsjcam0 (WS0) | 10 hours |  |  |

**Target data**: 1-hour sets for contrastive loss **Test data**: 1-hour sets for ASR performance

## **EXPERIMENTAL SETUP Pre-training** wav2vec models for contrastive loss GMM-HMM models for log-likelihood Data selection Calculate LR(u) where $u \in \Omega$ Sort the utterances by LR(u)Select data from $\Omega$ on a constraint, e.g. 10h Hybrid ASR system GMM-HMM and neural networks

# **RESULT - DATA SELECTION**

Data from the same corpus as the target data tend to be selected earlier with CLR than with LL.

Numbers of selected segments. The total numbers for AMI, FS, TD and WS0 were 3526, 3330, 3244 and 3685, respectively.

| Contrastive loss ratios (CLR) |            |          |      | Log-likelihood (LL) |          |          |      |          |      |          |
|-------------------------------|------------|----------|------|---------------------|----------|----------|------|----------|------|----------|
| target                        | hou<br>101 | rs of su | bset | selected            |          | target   | hou  | rs of su | bset | selected |
| data set                      | 10h        | 20h      | 30n  | data set            | <u>.</u> | data set | 10h  | 20h      | 30h  | data set |
| AMI                           | 3263       | 3503     | 3521 | AMI                 |          | AMI      | 2023 | 2810     | 3222 | AMI      |
|                               | 14         | 291      | 1083 | FS                  |          |          | 131  | 774      | 1863 | FS       |
|                               | 195        | 1811     | 2725 | TD                  |          |          | 306  | 1089     | 2020 | TD       |
|                               | 16         | 1320     | 3070 | WS0                 | _        |          | 1008 | 2261     | 3262 | WS0      |
| FC                            | 0          | 669      | 2209 | AMI                 |          | FS       | 13   | 1616     | 2717 | AMI      |
|                               | 3257       | 3328     | 3329 | FS                  |          |          | 3301 | 3325     | 3325 | FS       |
| 10                            | 65         | 2615     | 3123 | TD                  |          |          | 18   | 1399     | 2455 | TD       |
|                               | 0          | 15       | 1479 | WS0                 | _        |          | 0    | 349      | 1646 | WS0      |
|                               | 103        | 1524     | 2797 | AMI                 |          | TD       | 1385 | 2250     | 2899 | AMI      |
| TD                            | 362        | 1789     | 2686 | FS                  |          |          | 162  | 781      | 1807 | FS       |
|                               | 2773       | 3181     | 3219 | TD                  |          |          | 1100 | 2099     | 2779 | TD       |
|                               | 0          | 152      | 1471 | WS0                 | _        |          | 720  | 1662     | 2781 | WS0      |
| WS0                           | 104        | 2166     | 3299 | AMI                 |          | τλιςο    | 845  | 2492     | 3208 | AMI      |
|                               | 0          | 4        | 334  | FS                  |          |          | 4    | 337      | 1699 | FS       |
|                               | 28         | 1222     | 3116 | TD                  |          | 57       | 625  | 1861     | TD   |          |
|                               | 3527       | 3684     | 3685 | WS0                 |          | 2680     | 3653 | 3685     | WS0  |          |

# REFERENCES

S. Schneider, A. Baevski, R. Collobert and M. Auli, "wav2vec: Unsupervised pre-training for speech recognition," in *Proc. Interspeech* 2019, Graz, Austria, pp. 3465–3469, [Online]. doi: 10.21437/Interspeech.2019-1873. A. Krause, and D. Golovin, "Submodular function maximization," in Tractability: Practical approaches to hard problems, L. Bordeaux, Y. Hamadi and P. E. Kohli, Eds., p. 71–104. Cambridge University Press, 2014, [Online]. doi: 10.1017/CBO9781139177801.004.

| RESUL                                                                                                   |
|---------------------------------------------------------------------------------------------------------|
| WERs of A<br>by CLR w                                                                                   |
| Method                                                                                                  |
| CLR                                                                                                     |
| LL                                                                                                      |
|                                                                                                         |
| Resul                                                                                                   |
| ASR mod                                                                                                 |
| mance wi                                                                                                |
| Method                                                                                                  |
| CLR                                                                                                     |
| CL                                                                                                      |
|                                                                                                         |
| CONC                                                                                                    |
| <ul> <li>Usin for a the the</li> <li>ASE provident of the the the the the the the the the the</li></ul> |
| Ackn                                                                                                    |

This work was conducted at the VoiceBase Research Centre for Speech and Language Technologies at the University of Sheffield, which is funded by VoiceBase Inc.



# T - ASR PERFORMANCE

ASR models trained on data sets selected vere lower than by LL.

#### WERs(%) on selected data sets.

| target | 10h   | 20h   | 30h   | 40h   |
|--------|-------|-------|-------|-------|
| AMI    | 31.71 | 28.62 | 27.02 | 26.69 |
| FS     | 39.57 | 37.12 | 35.49 | 35.72 |
| TD     | 28.07 | 25.54 | 24.43 | 24.58 |
| WS0    | 11.14 | 9.57  | 9.32  | 9.90  |
| AMI    | 34.51 | 29.56 | 26.95 | 26.69 |
| FS     | 40.02 | 36.80 | 36.56 | 35.72 |
| TD     | 35.19 | 28.37 | 26.42 | 24.58 |
| WS0    | 11.27 | 9.90  | 9.89  | 9.90  |

### **T - NEGATIVE TRANSFER**

dels achieved equal to or better perforith less data.

WERs(%) on selected data sets.

| target | 80%   | 85%   | 90%   | 95%   |
|--------|-------|-------|-------|-------|
| AMI    | 26.98 | 26.79 | 25.91 | 26.35 |
| FS     | 35.83 | 36.96 | 35.83 | 35.72 |
| TD     | 24.97 | 25.25 | 24.94 | 24.34 |
| WS0    | 9.66  | 9.71  | 9.51  | 9.66  |
| AMI    | 27.19 | 26.55 | 25.78 | 27.36 |
| FS     | 35.02 | 36.11 | 35.75 | 35.50 |
| TD     | 25.09 | 24.61 | 24.34 | 24.59 |
| WS0    | 9.56  | 9.28  | 9.66  | 9.52  |

### LUSION

ng the proposed method, a training set automatic speech recognition matching target data set could be selected

R performance can be maintained or imved on the reduced amount of data seed by the method

# OWLEDGE

