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Problems with Brute-Force
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M-Fold Decimation
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Keep the first N/M samples
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M-Fold Decimation
D:cN - oN/M
Dx
Which samples to keep?

Assume an appropriate permutation (labeling) of the nodes
Keep the first N/M samples
Why? Labelling of the nodes is arbitrary!

Definition (Canonical Decimator)

D= Iynn Oy -+ Oypyy | € CVMIN

)

which retains the first N /M samples of the given graph signal.
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Spectrum Folding - Aliasing

Let « be a graph signal
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Multirate Processing of Graph Signals Concept of Spectrum Folding

What is the relation between z and y?
y=V'D'DV z

— A~ - — A~ -

Tl 2 Y1

No "simple" relation in general!
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More Results for M -Block Cyclic
Interpolation Filter on M-Block Cyclic Graphs
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M-Channel Filter-Banks (k'*-Channel)
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More Results for M -Block Cyclic
M-Channel Filter-Banks (k'*-Channel)
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More Results for M -Block Cyclic
M-Channel FB on M-Block Cyclic Graphs (Details)
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More Results for M -Block Cyclic
M-Channel FB on M-Block Cyclic Graphs (Details)

:134|j H()(A) ~ D DT FO(A) 4

Hy1(A) D DT HFu1(A)

F, = M H,

om(k+1
L %<w< W(M )’

0, otherwise,

H = V<I®ek€kT) vt Hy(e) = {

Hy = Hi(A) = hi(0) A + hy(1) A + ..+ by (L) A®
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More Results for M -Block Cyclic
M-Channel FB on M-Block Cyclic Graphs (Details)

x —— Ho(A) + D —| DT H FA) ~()—Y

@ H D o @) |

F, =M Hy

2w (k+1)

1, Ik o< M

M

Hj, = V<I®ek:6kT> v Hy(e?¥) = .
0, otherwise,

H), = Hy(A) = hy,(0) A° + hy(1) AL + ..+ hy (L) A
A needs to have distinct eigenvalues.b 8

50. Teke and P. P. Vaidyanathan. "Extending Classical Multirate Signal Processing Theory to Graphs — Part I: Fundamentals".
IEEE Trans. Signal Process. (Submitted).

SA. Sandryhaila and J. M. F. Moura. "Discrete Signal Processing on Graphs"./EEE Trans. Signal Process. 61.7 (2013)
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More Results for M -Block Cyclic
Is M-Block Cyclic Property Necessary?

M-Block Cyclic 7 Eigenvector Property :  v; j = QF v;
- Eigenvalue Property : A ji1 = wh A

70. Teke and P. P. Vaidyanathan. "Extending Classical Multirate Signal Processing Theory to Graphs — Part I: Fundamentals".
IEEE Trans. Signal Process. (Submitted).
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x Ho(A) H D U | Fo(A) Yy
Hy (A D U r|Fua(A)
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More Results for M -Block Cyclic
Is M-Block Cyclic Property Necessary?

M-Block Cyclic 7 = Eigenvector Property :  v; ju; = QF v,
- Eigenvalue Property : A ji1 = wk i j

For any polynomial H(A)
H(QAQ') = QH(A) Q! for any invertible Q

x Ho(A) H D U | Fo(A) Yy
Hy (A D U r|Fua(A)

D and U have higher complexity, but no restrictive assumptions on A.
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Some Examples

Examples

(a) Signal® ®

8s. Narang and A. Ortega. (2013) Graph bior wavelet toolbox. [Online]. http://biron.usc.edu/wiki/index.php/Graph_Filterbanks
9D. K. Hammond, P. Vandergheynst, and R. Gribonval. The spectral graph wavelets toolbox. [Online]. http://wiki.epfl.ch/sgwt
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Some Examples

Examples

(i) Signal® ® () Output of Channel-1

8s. Narang and A. Ortega. (2013) Graph bior wavelet toolbox. [Online]. http://biron.usc.edu/wiki/index.php/Graph_Filterbanks
9D. K. Hammond, P. Vandergheynst, and R. Gribonval. The spectral graph wavelets toolbox. [Online]. http://wiki.epfl.ch/sgwt
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Some Examples

Examples

P

(q) Signal® ®

(r) Output of Channel-1 (s) Output of Channel-2 (t) Output of Channel-3

8s. Narang and A. Ortega. (2013) Graph bior wavelet toolbox. [Online]. http://biron.usc.edu/wiki/index.php/Graph_Filterbanks

9D. K. Hammond, P. Vandergheynst, and R. Gribonval. The spectral graph wavelets toolbox. [Online]. http://wiki.epfl.ch/sgwt
Teke & Vaidyanathan
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Some Examples

Examples

() Output of Channel-2 () Output of Channel-3

() Signal () Output of Channel-1 () Output of Channel-2 () Output of Channel-3

8s. Narang and A. Ortega. (2013) Graph bior wavelet toolbox. [Online]. http://biron.usc.edu/wiki/index.php/Graph_Filterbanks
9D. K. Hammond, P. Vandergheynst, and R. Gribonval. The spectral graph wavelets toolbox. [Online]. http://wiki.epfl.ch/sgwt
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Conclusions

Conclusions

m Brute-Force Filter Banks

m Decimator
M-Block Cyclic Graph
m Unique Eigenvalue-Eigenvector Structure
Spectrum Folding
m Decimation-then-Expansion
m Bandlimited Signals
m Interpolation
M-Channel Filter Banks
Further Directions

m How does this compare with alternative ways?
m From ideal to non-ideal?
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m Decimator
M-Block Cyclic Graph
m Unique Eigenvalue-Eigenvector Structure
Spectrum Folding
m Decimation-then-Expansion
m Bandlimited Signals
m Interpolation
M-Channel Filter Banks
Further Directions

m How does this compare with alternative ways?
m From ideal to non-ideal?

Any questions?
Please email me: oteke@caltech.edu
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