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Supervised classification

Two widely used techniques in
classification:

- Data dimension reduction
- Estimate the centroids of
the classes
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Main objective of this work

Propose a new method for supervised classification method relying on a
minimization problem that couples:

• data dimension reduction through a linear transform,
• estimation of the centroids of the classes.
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Problem’s variables

Given inputs for the training:
• m samples, k classes,
• X ∈ Rm×d matrix containing the m samples,
• Y ∈ {0, 1}m×k matrix of one-hot encoded labels.

Unknowns:
• linear transform W ∈ Rd×` with `� d,
• matrix of centroids M = [M1, . . .Mk]> ∈ Rk×`.
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Minimization problem

Centroid-based classification approach amounts to minimizing the
following loss function with respect to the matrix variables
W (transform) and M (centroids) :

minimize
(M,W)

f(YM−XW) + g(W) + h(M)

where f is row-wise separable, i.e.

(∀Z = [Z1, . . . ,Zm]> ∈ Rm×`) f(Z) =
m∑

i=1
ϕ(Zi),

for some function ϕ : R` −→]−∞,+∞].
ª Once W and M were obtained using the training set, a new sample Xm+1
can be assigned to a class j∗, where j∗ satisfies

j∗ ∈ Argmin
j∈{1,...,k}

ϕ(Mj −W>Xm+1).
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Minimization problem

Centroid-based classification approach amounts to minimizing the
following loss function with respect to the matrix variables
W (transform) and M (centroids) :

minimize
(M,W)

f(YM−XW) + g(W) + h(M)

Example:
• A classical choice for f corresponds to f = ‖ · ‖2

F. In that case:

f(YM−XW) =
k∑

j=1

∑
i∈Cj

‖Mj −W>Xi‖2
2,

where (Cj)1≤j≤k denote the classes.
Alternative choice: f = ‖ · ‖1
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Minimization problem

Centroid-based classification approach amounts to minimizing the
following loss function with respect to the matrix variables
W (transform) and M (centroids) :

minimize
(M,W)

f(YM−XW) + g(W) + h(M)

Example:
• A sparsity-promoting regularization is often employed for W, correspond-
ing to g = α‖ · ‖1, where α > 0.
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Minimization problem

Centroid-based classification approach amounts to minimizing the
following loss function with respect to the matrix variables
W (transform) and M (centroids) :

minimize
(M,W)

f(YM−XW) + g(W) + h(M)

Example:

• Choice for function h ?
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Centroid separation term

We opt for a particular choice of function h which encourages the
separation of the centroids , namely

(∀M ∈ Rk×`) h(M) = −γ
∑

16i<j6k

‖Mj −Mi‖1.

Note that h is nonconvex, which makes the optimization problem difficult
to solve.

Segolene Martin ICASSP 2022 6 / 12



How to avoid trivial solutions?

o Issue with this model:
One of the following is likely to happen for standard choices of functions f
and g:
• the criterion is unbounded from below,
• (M,W) = (0,0) is a trivial solution.
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How to avoid trivial solutions?

ª we bound the centroid matrix M by constraining each of the centroids
(Mj)1≤j≤k to lie in a closed ball of radius δ > 0.
The modified minimization problem is:

minimize
(M,W)

f(YM−XW) + g(W) + h(M)

subject to M ∈ C

(2)

where
C =

{
M ∈ Rk×` | (∀j ∈ {1, . . . , k}) ‖Mj‖2 ≤ δ

}
,

where δ > 0 is a fixed parameter.
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An equivalent formulation

Rewriting the `1-norm through its dual norm, we can define a matrix
A ∈ R(`(`−1)/2)×k such that

h(M) = −γ
∑

16i<j6k

‖Mj −Mi‖1 = −γ max
‖U‖∞≤1

〈AM,U〉,

Therefore, Problem (2) is equivalent to

minimize
(M,W,U)

f(YM−XW) + g(W)− γ〈AM,U〉

subject to M ∈ C and ‖U‖∞ ≤ 1

(3)

ª The above problem is convex with respect to each variable M,W,
and U when f and g are convex.
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Proposed algorithm

Alternating proximal algorithm
–> perform a proximal minimization step on each

one of the variable M , W , U successively

Accelerated primal-dual algorithm
–> to compute the proximal operator

when it is not closed-form

3 when f and g are convex proper l.s.c, the algorithm is guaranteed to
converge to a critical point of the objective.
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Numerical experiments

ª We evaluate the performance of our method on the KEEL dataset
texture sonar pima wdbc banana magic satimage titanic bupa AVG

Train 87.0 85.4 74.7 94.1 57.3 77.1 78.3 77.3 59.7 76.8Ours Test 86.4 72.0 73.0 94.0 54.9 77.2 77.3 77.3 58.2 74.5
Train 72.8 83.1 76.5 88.0 56.0 66.0 74.7 77.6 69.3 73.8Barlaud et al. Test 72.3 68.1 75.5 87.2 54.4 65.7 72.1 77.6 67.8 71.2
Train 74.5 72.7 73.4 93.9 57.7 77.1 78.7 75.4 60.0 73.7NCM Test 73.7 70.2 72.8 93.7 57.4 76.9 78.4 74.6 60.0 73.1

Table: Classification rate of our method compared to the state-of-the-art.
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