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Matched Manifold Detection for Group-Invariant
Registration and Classification of Images
Ziv Yavo, Yuval Haitman, Joseph M. Francos , and Louis L. Scharf , Life Fellow, IEEE

Abstract—Consider the set of possible observations turned out
by geometric and radiometric transformations of an object. This set
is generally a manifold in the ambient space of observations. It has
been shown [1] that in those cases where the geometric deforma-
tions are affine and the radiometric deformations are monotonic,
the radiometry invariant universal manifold embedding (RIUME)
provides a mapping from the orbit of deformed observations to a
single low dimensional linear subspace of Euclidean space. This
linear subspace is invariant to the geometric and radiometric
transformations and hence is a representative of the orbit. It thus
naturally serves as an invariant statistic for solving problems of
joint transformation estimation and detection or classification. In
the unsupervised detection problem, subspaces evaluated from two
observations are tested for the similarity of the observed object and
their relative transformation is estimated from the RIUME matrix
representation. In the classification set-up the RIUME subspace
extracted from an experimental observation is tested against a set
of subspaces representing the different object manifolds, in search
for the nearest class. We show how to extract a set of mutually
orthogonal subspaces, where each subspace represents a different
object manifold. In the presence of observation noise, the observa-
tions do not lie strictly on the manifold and the resulting RIUME
subspaces are noisy. We derive a method for estimating the mean
subspace representation of a manifold of deformed observations. To
optimize the performance of the matched manifold detector in the
presence of observation noise, an analytic solution for choosing
the RIUME nonlinear operators is derived, achieving the effect
of simultaneous denoising of the object manifolds. The invariant
representation of the object is the basis of a matched manifold de-
tection and tracking framework for objects that undergo complex
geometric and radiometric deformations. The experimental results
on natural scenes demonstrate the generality and applicability
of the RIUME framework for classification, detection, and dense
registration.

Index Terms—Object detection, invariant classification, affine
coordinate transformation, matched manifold detection, subspace
averaging, dense registration.
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I. INTRODUCTION

THERE are many problems in image and signal analysis
where an object to be detected presents itself subject to

a-priori unknown geometric and radiometric transformations.
Hence an understanding of the set of all possible observations of
that single object is essential. We shall refer to these observations
as images, where image is to be taken as a general term for
scalar or vector valued measurements recorded at points in
n-dimensional space.

As a result of the action of geometric and radiometric
deformations, a set of observations (images) of an object is
generally a manifold in the image space. Thus, although the
data may be sampled and presented in a high-dimensional
space because of the high resolution of the camera sensing the
scene, in fact the intrinsic complexity and dimensionality of the
observed physical phenomenon are low. While there are many
cases where no prior knowledge of the sources of the variability
in the appearances of an object is available, there are many
scenarios in which such information is available, and hence can
be exploited for efficient detection and classification of objects
from their deformed images.

Radiometry invariant universal manifold embedding (RI-
UME) [1], [2] is a methodology for constructing a covariant
matrix representation of an image, and then using this represen-
tation to identify a linear subspace that is invariant to monotonic
amplitude transformations and to affine coordinate transforma-
tions of the image. The covariant RIUME matrix representation
obtained by this procedure may be inverted for the parameters
of the geometric transformation. Practical application of the
method requires a high-quality estimate of the invariant subspace
for each of K objects, and each of these subspaces must be
estimated from one or more versions of an object, imperfectly
imaged in one or more of its representative poses. This suggests
that subspaces must be averaged in a training stage. Moreover,
for reliable detection and classification, the subspaces for the
respective images should be as well separated as possible. In
this paper we address these issues by extending the theory of
invariant target detection and classification, manifold denoising
and wide baseline dense registration, in important ways:

1) By applying the order-fitting rule reported in [18] and [20],
we extend the results in [19] to construct invariant sub-
spaces for use in RIUME in the presence of observation
noise.

2) We clarify the way in which level-set images, computed
at each quantization level in an image, serve as a basis for
the invariant subspaces in RIUME.
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3) We derive an optimal companding of the level-set images
for orthogonalizing as many as K RIUME subspaces for
K objects; here K ≤ Q/(n+ 1), with Q the number of
quantization levels in the image, and n determined by the
number of degrees of freedom defining the group action
(for example, n = 2 for the case of affine transformations
of two-dimensional images).

4) In the presence of observation noise, the observations do
not lie strictly on the manifold and the resulting RIUME
subspaces are noisy. The derived analytic solutions for de-
signing the RIUME operators and for estimating the mean
RIUME representation of each manifold is equivalent to
simultaneous denoising of all the object manifolds.

5) Since almost any imaged surface can be well approximated
by its tessellation into tiles, such that two observations on
the same tile are related by simultaneous affine transfor-
mation of coordinates and a monotonic mapping of the
intensities, we employ this framework to optimize a linear
algorithm for estimating the homography transformation
relating two observations taken from different angles on a
planar surface. This approach is then extended and opti-
mized for obtaining dense registration of complex scenes,
where the shape of the object is a-priori unknown and no
closed-form model of the transformation exists, such as in
wide baseline multi-view registration.

The structure of this paper is as follows: In Section II we
provide the basic definitions and properties of the radiometry
invariant universal manifold embedding. Then, in Section III
we define the basic principles of the Matched Manifold Detector
(MMD). In Section IV we derive a method for estimating the
mean subspace representation of a manifold of noisy and de-
formed observations, and determining its dimension. Section V
elaborates on design procedures for optimizing the RIUME op-
erator. This procedure is demonstrated using a detailed example,
and a detailed experimental analysis of its performance in Sec-
tion VI. An algorithm for robust homography estimation using
the optimized local MMD is derived and its performance tested
in Section VII. In Section VIII we demonstrate the effectiveness
of the optimized MMD for wide baseline registration of a
complex scene, where the shape of the scene is a-priori unknown
and there is no closed-form model of the transformation. In
Section IX we provide our conclusions.

II. PROBLEM FORMULATION

Consider an object s ∈ {s1, . . . , sK}, and an abstract orbit
αs, α ∈ G of equivalent objects turned out by the transformation
group G. A typical group G is the rotation group of 3-D rigid
objects, SO(3). In the framework of this paper we consider the
case where the action ofG on {s1, . . . , sK} can be approximated
by (or inferred from) the action of another groupGon a recorded,
segmented, image of s, denoted X(u; s), where u ∈ Rn is the
image coordinate system, andX : Rn −→ R. More specifically,
we concentrate on the special case where the action ofG and its
relation to G are approximated by

X(u, α ◦ s) = α ◦X(u, s) = U(X(A(u), s)), (1)

such thatU ∈ U : R −→ R is a monotone radiometric map, and
A ∈ Aff[n] : Rn −→ Rn is an n-dimensional affine transfor-
mation of coordinates, parameterized by A : u �→ v = Au+ c
where A ∈ GL[n], c ∈ Rn; Aff[n] denotes the n-dimensional
affine group and GL[n] the general linear group. The sets U and
Aff[n] are closed under composition:

α2 ◦ α1 ◦X(u, s) = U2(U1(X(A2(A1(u)), s)))

= α ◦X(u, s), α ∈ G. (2)

The image X(u, sk) of object sk will be denoted Xk and
the set ψXk

= {α ◦Xk, α ∈ G} will denote the orbit of images
turned out by the group G. There exists one such orbit for each
object sk. Our aim is to nonlinearly map each observation α ◦
Xk, taken from the orbitψXk

, to a matrix representationT(Xk).
This matrix is to be linearly covariant with the parametrization
of G; Its column space, which we denote by 〈T(Xk)〉 is to be
G-invariant. In other words, the orbitψXk

is mapped into a linear
subspace 〈T(Xk)〉, such that the mapping is G-invariant.

It is understood that the map from the groupG to the groupG
will not precisely model the imaging of 3-D objects, for example.
Similarly, radiometric variations are not globally monotone. In
these cases, the mapping should be considered a local approx-
imation of the mapping from object to image. Therefore, being
able to infer the actions ofG on an observationX provides local,
or approximating, information about the hidden action of Ḡ on s.

In the context of this paper, the term “manifold” is adopted
from the machine learning and dimensionality reduction liter-
ature, [4]–[12], to refer to the orbit of X(u, s) under G, i.e.,
to the set of all possible observations {α ◦X(u, s), α ∈ G},
due to the action of the group G. We note that most of these
manifold learning techniques consider the case where the data
lies on the manifold. However, only very few methods have been
suggested to estimate the underlying manifold structure from
noisy data, [14], [15].

It has been shown [1] that in the case where the observations on
an object are determined by an affine geometric transformation
of coordinates, jointly with a monotonic radiometric transforma-
tion, the RIUME operator returns a basis T(X) that is covariant
to the coordinate transformation, and a subspace 〈T(X)〉 that is
G-invariant. That is, the set of all possible observations on an
object under group action G is mapped by the RIUME operator
into a single linear subspace which is invariant to both the
geometric and radiometric transformations.

A. Radiometry Invariant Universal Manifold Embedding

Begin with image X and its deformation α ◦X:

α ◦X(u) = U(X(A(u))), u ∈ Rn (3)

whereU is invertible andA is affine. In [1], [2] two maps are de-
fined: R : L2(Rn) → L2(Rn) and T : L2(Rn) → T (M,n+
1), where T (M,n+ 1) is the space ofM × (n+ 1) real-valued
matrices, and M is the dimension of the embedding Euclidean
space.

The map T ◦R is called a radiometry invariant universal
manifold embedding, RIUME. It maps every observationX from
the orbit ψX to a matrix T(X) ∈ T (M,n+ 1) such that T(X)
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is covariant with the geometric transformation and invariant to
the radiometric transformation. It allows for simple estimation
of the affine transformation between any two observations on
the same object.

The map Q : T (M,n+ 1) → Gr(M,n+ 1), where
Gr(M,n+ 1) is the Grassmann manifold of n+ 1-dimensional
linear subspaces of M -dimensional Euclidean space, maps
T(X) to its column space 〈T(X)〉. We conclude that the
RIUME maps the orbit ψX into the G-invariant subspace
〈T(X)〉 ∈ Gr(M,n+ 1). That is, Q ◦ (T ◦R) : ψX −→
〈T(X)〉.

The details are these. Consider the mapping R of X(u),u ∈
Rn to a new and “normalized” observation X̃(u) (for breivity
we omit the dependence on s from the notation), where

X̃(u) = R(X(u)) =
λ[x : X(x) ≤ X(u)]

λ[supp{X}] (4)

and λ is Lebesgue measure. It is shown in [3] that
R(U(X(A(u)))) = R(X(A(u))). That is, the histogram
equalization R applied to U(X(A(u))) returns a histogram-
equalized image R(X(A(u))). The effects of the group action
U have been removed, leaving only the group action A. To
simplify notation we remove the tilde with the understanding
that the radiometric equalization has been applied.

To characterize the affine transformation of coordinates, begin
with v = [v1, . . . , vn]

T and let ṽ = [1, v1, . . . , vn]
T denote the

homogeneous coordinates representation of v. Thus, u = Dṽ
where D is an n× (n+ 1) matrix given by D = [b A−1],
where b = −A−1c. Let wl l = 1, . . . ,M be a set of bounded,
Lebesgue measurable functionswl : R → R. LetDk denote the
kth row of the matrix D. Then, [13],

∫
Rn

ukw� ◦ (α ◦X(u))du =
∣∣A−1

∣∣ ∫
Rn

(Dkṽ)w� ◦X(v)dv.

(5)
Define the M × (n+ 1) matrix, Eqn. (6) shown at the bottom
of this page,

We call T(X) the RIUME matrix representation of the image
X . It amounts to a mapping of X to an M × (n+ 1) matrix of
first-order moments in each of n coordinate directions, plus one
zeroth-order moment. Each of these moments is computed for
one of M companded versions of the image, denoted wm ◦X .
The typical moment in the (m, i+ 1) element ofT is an integral
of uiwm ◦X .

Denote D̃ = [e1 DT ] where e1 = [1, 0, . . . , 0]T . Then, ifα ◦
X is an observation of X undergoing an affine deformation
represented by the matrix D, then from (5) we have

T(α ◦X) = T(X)
∣∣A−1

∣∣ D̃. (7)

Since T(α ◦X) and T(X) are related by an invertible
transformation that is a re-expression of the affine transforma-
tion matrix D relating the observations, we say that the basis
T(X)|A−1|D̃ is covariant with the affine transformation. Hence
it provides a method for estimating the affine transformation
that relates any two observations. The affine transformation that
relates X and α ◦X is evaluated by solving this linear sys-
tem, [13]. That is, noise-free, (T(X)TT(X))−1T(X)TT(α ◦
X) = |A−1|D̃. The scale |A−1| is determined from the ratio
of any of the elements in the left column T(α ◦X) to the
corresponding element in T(X), and then the elements of D
may be determined. Furthermore, since T(α ◦X) and T(X)
are related by a right invertible linear transformation, the column
space of T(X) and the column space of T(α ◦X) are identical.
Their bases are different, but their range spaces are identical.
Hence, the subspace 〈T(X)〉 is a G-invariant statistic that is
constant on image orbits, and hence distinguishes the orbits of
different objects under affine coordinate transformation of their
images.

Computation of covariant (sometimes called equivariant) mo-
ments, and the use of these moments to construct invariant
functions of these moments, usually as rational functions of
the computed moments, are often employed for classification
in computer vision, see, e.g., [25],–[27] and the references
therein. Typically several invariant functions of many covariant
moments are computed, and these are used to represent an
image and its versions under a transformation group. Most of
this research is devoted to finding invariants to the action of
geometric transformations, and especially by considering their
contours, as these are assumed to be less sensitive to illumination
variations. In [27] this framework is generalized to include color
moments in order to provide invariants in the presence of linear
intensity variations. However, it is known that the use of high
order moments is problematic especially in the presence of
illumination model mismatches and noise. Here we are instead
using only a zeroth-order moment and n first-order moments,
but computing these for many companded versions of the image,
to achieve invariance to affine geometric transformations and
monotonic illumination variations. We are exchanging a large
set of moments of a single image for a small number of moments
of a large number of companded versions of the image. In some
cases these compandings are level-set slices of the image. In
this case a small number of moments are computed for what
might be called the Lebesgue supports of the image at level
slices. These moments are organized into an equivariant matrix
which may be used to define an invariant subspace. Thus the
major difference between the approaches is that unlike the
moment invariant methods that use high-order moments and
their nonlinear invariant functions for classification, the RIUME
representation uses low-order moments of many compandings of

T(X) =

⎡
⎢⎢⎣

∫
Rn w1 ◦X(u)du

∫
Rn u1w1 ◦X(u)du . . .

∫
Rn unw1 ◦X(u)du

...
. . .

...∫
Rn wM ◦X(u)du

∫
Rn u1wM ◦X(u)du . . .

∫
Rn unwM ◦X(u)du

⎤
⎥⎥⎦ (6)
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an image. These produce a subspace representation of an image
orbit, a subspace that may be used for covariant estimation and
invariant detection-and-classification.

III. THE DETECTION-CLASSIFICATION PROBLEM AND THE

DISTANCE BETWEEN EQUIVALENCE CLASSES

The RIUME uses the operator T to universally map a mani-
fold, generated by the set all monotone radiometric and affine co-
ordinate transformations of an imaged object, into aG-invariant
linear subspace. That is, the RIUME operator maps the or-
bit {α ◦X,α ∈ G}, to a point 〈T(X)〉 on the Grassmannian
Gr(M,n+ 1).

In the RIUME framework the problem of detection-
classification of radiometrically and geometrically deformed
objects is formalized as follows: Given an observation Z, (for
example in the form of an image), where both its geometric and
radiometric deformations are unknown, the problem is to de-
termine whether Z = α ◦X or Z = β ◦ Y , for some α, β ∈ G,
and X,Y some reference images of known objects.

Since the detection-classification is to be G-invariant, we
propose in this paper to compute T(Z) using (6) and measure
the distance between the subspace 〈T(Z)〉 and the subspaces
〈T(X)〉 and 〈T(Y )〉. That is, the observation Z is determined
to belong to the orbitψX if the distance from 〈T(Z)〉 to 〈T(X)〉
is smaller than its distance to 〈T(Y )〉, and is small enough to be
considered a detection. Then, the observation Z is determined
to be α ◦X for some α ∈ G.

Following [22], [23] we compute the distance between a
pair of subspaces as the extrinsic distance, evaluated using the
projection Frobenius-norm

d(〈T(Z)〉, 〈T(X)〉) = 2−
1
2 ||PX −PZ ||F = || sin θ||2 (8)

where sinθ is a vector of sines of principal angles between the
subspaces. The matrix PX denotes the orthogonal projection
matrix onto the subspace 〈T(X)〉. This result provides the
basis for Matched Manifold Detection in the presence of both
radiometry and geometry transformations between observations.
It is concluded that as long as two observations on the same
object differ by an affine transformation of coordinates and
some monotonic transformation of the pixel amplitudes, the
corresponding projection matrices will be identical.

All of these arguments extend to the classification of
the observation Z as an element of the orbit ψs, where
argmink d(〈T(Z))〉, 〈T(Xk)〉) = 〈T(Xs)〉.

In practice we do not have noise-free observations on the set
of objects {s1, . . . , sK}. Therefore, the subspace 〈T(Xk)〉must
be computed in a training step from noisy versions of α ◦Xk,
α ∈ G. This suggests that for every k = 1, . . . ,K, experimental
copies of the subspaces 〈T(Xk)〉 must be averaged in order to
arrive at a subspace that approximates the “noise-free” 〈T(Xk)〉.
This average subspace is the G-invariant statistic of the de-
noised manifold, obtained without explicitly first obtaining the
denoised manifold as in [14], [15].

IV. THE SUBSPACE MEAN

To compute the extrinsic distance between subspaces is to
compute the Frobenius norm between the respective orthogonal
projection matrices onto these subspaces. This suggests that the
extrinsic “average” of several subspaces should be derived from
an average of their projections. But this suggestion requires re-
finement, for the average of projections is no longer a projection.
In [17], the problem of averaging affine transformed n-point
configurations represented as subspaces of Rn, is addressed.
In [16] an analysis of different subspace means is presented.
In [18], [19] the result to follow is derived from a slightly
different perspective, and the order fitting rule of [18] is used to
determine the dimension of the average subspace.

Let {P�, � = 1, 2, . . . , L} denote a set of M ×M orthog-
onal projection matrices onto r-dimensional subspaces of M -
dimensional Euclidean space. Each projection matrix projects
a standard basis vector em ∈ RM onto a subspace, as P�em.
We seek an average projection P which minimizes the averaged
squared distance between all such projections, where the average
is over all basis vectors and all projections. That is,

P = arg min
P∈Pr

1

L

M∑
m=1

L∑
�=1

‖(P−P�)em‖2

= arg min
P∈Pr

1

L

M∑
m=1

L∑
�=1

eTm(P−P�)
T (P−P�)em (9)

wherePr is the set of all rank r projections in theM -dimensional
ambient space. Let Q = 1

L

∑L
�=1 P�. Then

P = arg min
P∈Pr

M∑
m=1

eTm(P−QP−PQ+Q)em

= arg min
P∈Pr

tr(P−QP−PQ+Q)

= arg min
P∈Pr

tr
[
(P−Q)(P−Q) + (Q−Q2)

]
(10)

The term (Q−Q2) is not affected by the choice of P, so the
equivalent problem is

P = arg min
P∈Pr

tr [(P−Q)(P−Q)] (11)

Represent the orthogonal projection P as P = UrU
T
r , where

Ur is a slice of an orthogonal matrix. Since Q is the average
of projection (and hence symmetric) matrices, it is symmetric.
Hence, its EVD is given by Q = VΓVT , Γ = diag(γi), γ1 ≥
γ2 ≥ . . . ≥ γM , with V orthogonal. Then, the quadratic form
to be minimized is [18]–[20]

Vr
.
= tr

[
(UrU

T
r −VΓVT )(UrU

T
r −VΓVT )

]
= tr

[
UrU

T
r

]
+ tr

[
VΓ2VT

]
− 2tr[UT

r VΓVTUr]

= r +

M∑
m=1

γ2m − 2tr[UT
r VΓVTUr]

≥ r +

M∑
m=1

γ2m − 2

r∑
m=1

γm (12)
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with equality, for a given r, iff Ur = [v1,v2, . . . ,vr], where
vi, i = 1, .., r are the r eigenvectors of Q associated with its
r largest eigenvalues. Hence, 〈Ur〉 is the desired G-invariant
mean subspace. The resulting mean-squared error is

Vr =

r∑
m=1

(γm − 1)2 +

M∑
m=r+1

γ2m (13)

However, since Vr ≤ Vr−1 as long as 1/2 ≤ γr, we conclude
that Vr is minimized over rank r by choosing r∗ = maxm :
γm ≥ 1/2 [18]. This completes the computation of the best rank
r∗ projection Pr∗ for averaging the set of projections {P�}, � =
1, 2, . . . , L, with Vr∗ the measure of average error.

The experimental procedure is now this: for each object sk,
record L noisy versions of the images α ◦Xk; for each of these
images extract itsG-invariant subspace; average these subspaces
according to the procedure above to estimate a G-invariant
subspace for the orbit ψk.

V. THE OPTIMAL SET OF REPRESENTATIVES FOR

MULTIPLE ORBITS

We now show that the set of companding w-functions may
be designed to orthogonalize the subspaces 〈T(Xk)〉, k =
1, . . . ,K.

A. Representation by Level-Sets

Assume we are given an observation X(u), u ∈ Rn, quan-
tized at levels {qi}Qi=1, so that it may be written as

X(u) =

Q∑
i=1

qiI
X
i (u) (14)

where IXi (u) is the indicator function that equals 1 on the level-
set of u where qi−1 < X(u) ≤ qi, and zero elsewhere.

Thew operators must be designed such that the result of their
application is covariant with the geometric transformation, and
hence they are not functions of the coordinates. The action of
wm on the image X is simply to map the levels qi into levels
wm(qi), leaving the indicator images IXi unchanged. Then, each
term in the matrix T(X) may be written as

Tm,j =

∫
Rn

wm ◦X(u)ujdu

=

Q∑
i=1

wm(qi)

∫
Rn

IXi (u)ujdu

=

Q∑
i=1

wm,iF
X
ij , (15)

where wm,i = wm(qi). This makes the moments FX
ij =∫

Rn I
X
i (u)ujdu, the image features of fundamental interest.

Moreover, we can now write the moment matrix T(X) as

T(X) = WFX ; W = {wm,i} ∈ RM×Q,

FX = {FX
ij } ∈ RQ×(n+1), (16)

where FX may be called the fundamental RIUME represen-
tation matrix for image X . Since M ≤ Q, the role of W is
to transform the subspace 〈FX〉 ⊂ Gr(Q,n+ 1) to a subspace
〈WFX〉 in Gr(M,n+ 1). A single W has to serve for all the
orbits ψ1, . . . , ψK .

We have thus reduced the problem of finding an optimal set of
RIUME representations to a problem of finding W. The special
case where we choose M = Q, and set W = IM results from
the choice of the w-functions to be indicator functions of the
quantization levels.

B. The Optimal RIUME Operators: Grassmannian
Dimensionality Reduction

We next wish to find the optimal set of w-functions that best
separates the RIUME matrix representations of the different
orbits. It is assumed that we have a set of K objects, such
that K ≤ Q/(n+ 1) where for each object L observations are
available. Applying the RIUME operator (6), using a set of
functions chosen to be the indicator functions on the level-sets of
the quantization levels, i.e., W = IQ, we find the fundamental
RIUME representation for each of the observations, and obtain
the set {Fk,j}k=K,j=L

k=1,j=1 .
The procedure for finding the optimal set of w-functions is

initialized by finding for every one of the K orbits its mean
fundamental RIUME representation by evaluating P̄k, the mean
projection matrix, from the set {Fk,j}j=L

j=1 ; We next find among
the available observations on orbit k some observation j such
that its corresponding projection matrix Pk,j has the smallest
distance to P̄k. Thus observation j now becomes the represen-
tative of the kth orbit andFk is the result of evaluating the funda-
mental RIUME representation of a “real” observation. The next
step is to concatenate theK fundamental RIUME representative
matrices into the composite fundamental representation matrix
F ∈ RQ×K(n+1), K(n+ 1) ≤ Q

F =
[
F1,F2, . . . ,FK

]
. (17)

Since a single W has to serve for all the orbits, we define the
companded representations

WF =
[
WF1,WF2, . . . ,WFK

]
. (18)

The optimal matrix W ∈ RM×Q orthogonalizes the frames
WFk, k = 1, 2, . . . ,K with respect to each other. So the prob-
lem is to choose W ∈ RM×Q so that

(WF)TWF = IK(n+1). (19)

This makes the RIUME matrices Tk = WFk orthogonal
representations on the compact Stiefel manifold ofM × (n+ 1)
orthonormal matrices for all K image orbits under affine coor-
dinate transformation; and the corresponding subspaces 〈Tk〉
mutually orthogonal subspaces on Gr(M,n+ 1).

The solution for W is found from the SVD: F =
UΣVT ,Σ = diag[σ1, . . . , σK(n+1)]. It is straightforward to
show that in the case where M may be set to K(n+ 1), the
companding matrix

W = Σ−1UT ∈ RK(n+1)×Q (20)
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is the solution for Wopt, as indeed

FTWTWF = (VΣUT )UΣ−1Σ−1UT (UΣVT )

= VVT = IK(n+1) (21)

This solution is unique up to left multiplication by an orthogonal
matrix. This amounts to rotating the entire space such that all
distances between the subspaces remain the same.

There are several remarks to be made about this solution.
First, in the noise-free case the derivation in (18)–(20) provides
a methodology for jointly shaping the RIUME operators so
that maximal separation is achieved between the representations
of orbits of different objects, while minimizing the distance
between observations that belong to the same orbit. This so-
lution is achievable since the indicator functions on level-sets
of the quantization levels span the entire space of w-functions
when the observations are quantized. The solution preserves
the dimension of the ambient space to be Q = K(n+ 1). In
the noise-free case, there is no need to have more companded
images than M = K(n+ 1). Second, it might be argued that
there is no need to take the matrix FTWTWF to identity,
when taking it to a block-diagonal matrix of non-singular (n+
1)× (n+ 1) blocks would be sufficient for orthogonality of the
respective subspaces. The solution given here returns a block-
diagonal matrix of (n+ 1)× (n+ 1)identities for free. Thirdly,
for K(n+ 1) > Q, in which case the matrix F ∈ RQ×K(n+1)

consists of more columns than rows, the problem is a problem of
packing subspaces onto the Grassmannian in such a way that the
intrinsic or extrinsic distances between subspaces are equalized,
or perhaps the minimum distance is maximized. This problem is
further complicated by the requirement that the base subspaces
〈Fk〉 are fixed by the targets to be classified, and only the linear
map W ∈ RM×Q may be designed.

In the presence of noise, however, the suggested solution may
be modified in order to control the noise contribution to classifi-
cation errors. Hence, w-functions associated with subdominant
modes of F that may be due to additive noise, may be excluded
from the set ofw-functions. We therefore search for the “knee” of
the singular values inΣ and set to zero those singular values that
are below a threshold. In that caseM is reduced to r, the number
of singular values above the threshold. Thus, in the presence of
additive noise we evaluate W as

Wr = Σ−1
r UT

r (22)

where Σr is an r × r diagonal matrix containing the r dominant
singular values, and the columns of Ur are composed of the r
dominant left singular vectors of F.

The subspaces 〈WrFk〉 are now taken to be estimates of
signal subspaces. In this case, the orthogonality of the RIUME
matrices Tk = WrFk and that of the corresponding subspaces
〈Tk〉 on GR(r, n+ 1) is no longer guaranteed. This effect is
similar to the one where an attempt to reduce an estimator
“variance” results in increasing its “bias”.

Remark: The derived procedure for designing the optimal
w-functions in the presence of noise can be interpreted as
a Grassmannian dimensionality reduction procedure aimed at
improving the classification/registration/detection performance

by mapping the problem from the original Grassmann man-
ifold GR(M,n+ 1), where M = Q to a lower dimensional
ambient space Grassmann GR(r, n+ 1). So the problem stated
in (18) is in fact to find the W and the reduced-dimension
r < M of the Grassmann ambient space where classifica-
tion/registration/detection performance is optimized.

Finally, applying the designed w-functions (22) to the col-
lection of available observations on each object and evaluating
its mean G-invariant subspace by following the procedure de-
rived in Section IV, we simultaneously obtain the G-invariant
statistics of the denoised object manifolds for all orbits, without
explicitly obtaining the denoised manifolds.

VI. PERFORMANCE EVALUATION ON SYNTHETIC IMAGES

In this section, we conduct several synthetic experiments
aimed at illustrating the procedure for designing the optimized
w-functions. We demonstrate the performance gain of using the
designed set of w-functions against the performance obtained
by a naive choice of the w-functions as indicator functions.
The synthetic set-up and the knowledge of the ground-truth and
experimental parameters enable a detailed understanding of the
effects of optimizing the RIUME operator.

A. Optimal Choice of the RIUME Operators

The experimental setup is this: Pick a noise-free image of an
object. This image will serve as our noise-free ideal observation–
a sample from the true manifold. This image is then deformed
according to the assumed geometric deformation model, and
zero-mean white Gaussian noise (WGN) is added to the obser-
vation (The noise std is 12 gray levels; amplitudes greater than
255 are clipped to 255 and negative amplitudes are clipped to
zero). The top-left images in Fig. 2 and Fig. 3, as well as the
images in Fig. 4 provide typical examples of images from the
set. The number of different objects is K = 30. The training
set is composed of 40 observations on each object, obtained by
applying different affine geometric deformations to the original
observation followed by adding zero-mean WGN as described
above. The training set was employed to evaluate the funda-
mental RIUME representation of each observation, the mean
fundamental RIUME representation of each object, and to design
the optimal w-functions. In order to demonstrate the effect of
quantizing the noisy images, in this experimentQ =M = 100,
and hence the fundamental RIUME matrix representation is
computed using 100 w-functions, chosen to be indicator func-
tions on the level-sets, uniformly spread over the entire [0,255]
range of amplitude levels. The optimal set ofw-functions is then
designed using the procedure of Section V. In this experiment
the number of dominant singular values was found to be 10, and
hence the number of optimalw-functions is 10. Therefore, using
the set of optimal w-functions the dimension of the ambient
space is r = 10. As a consequence, the extracted matrix T for
any new image to be classified has dimension 10× 3.

In Fig. 1 we depict the set of 6 optimal w-functions that
correspond to the 6 most dominant singular values. The fun-
damental RIUME matrix representation is computed using 100
w-functions, chosen to be indicator functions uniformly spread
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Fig. 1. w-functions that correspond to the six dominant singular values obtained using (22).

Fig. 2. Observed image and the results of applying the above 5 designed w-functions that correspond to the 5 most dominant singular values. Top row, from left
to right: observed image X; w1 ◦X; w2 ◦X; Bottom row, from left to right: w3 ◦X; w4 ◦X; w5 ◦X .

over the entire [0,255] range of amplitude levels and the plots in
Fig. 1 depict the value w(qi) for each grey-level qi.

In Fig. 2 we depict the results of applying the 5 optimal
w-functions that correspond to the 5 most dominant singular
values, to an example noise-free image. For display purposes
the intensity levels of all images are scaled to the range 0–255.
In Fig. 3, we depict the results of applying the same procedure
to a deformed and noisy observation on the same image. It
can be observed from the example images that each of the

w-functions extracts different properties of the observation,
while being covariant with the geometric transformation. We
observe in these examples that while the optimal w-functions
that correspond to the two most dominant singular values map
the majority of the grey levels to nearly the same value, the next
w-functions separate close grey level values in an oscillatory
pattern, at increasing frequencies. This type of mapping implies
that the designedw-functions aggregate pixels with substantially
different gray levels to the same level-set.
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Fig. 3. Observed deformed and noisy image; and the results of applying the 5 designed w-functions that correspond to the 5 most dominant singular values. Top
row, from left to right: observed image X; w1 ◦X; w2 ◦X; Bottom row, from left to right: w3 ◦X; w4 ◦X; w5 ◦X .

Fig. 4. Example images from the test set employed to generate the results in Fig. 5 and Fig. 6.

B. Performance Evaluation of Applying the Optimal
w-Functions

In this section we demonstrate in the context of a classi-
fier design the performance gain of using the designed set of
w-functions in comparison with the performance obtained by a
naive choice of the w-functions as indicator functions.

A test set (different from the training set) composed of 40
deformed and noisy images was generated for each of the K =

30 objects. Example images from this test set are shown in Fig. 4.
The geometric and radiometric deformations in the observations
are assumed unknown. Throughout, distances between RIUME
representations of different observations are evaluated using (8).

In the experiment to follow we evaluate the classifier per-
formance by evaluating its ROC curve for 4 different classifier
designs:

1) Use designed w-functions to compute the RIUME rep-
resentation of an observation to be classified; Use the
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Fig. 5. The ROC curves of the four tested classification strategies on affine
transformed observations: Blue - Classifier based on the minimum distance to the
mean-RIUME representations of the different orbits, evaluated with optimized
w-functions. Cyan - Classifier based on the minimum distance to the RIUME
representations of all the observations in the training set, evaluated with opti-
mized w-functions. Red - Classifier based on the minimum distance to the mean
fundamental RIUME representations of the different orbits. Green - Classifier
based on the minimum distance to the fundamental RIUME representations of
all the observations in the training set.

mean-RIUME representation evaluated using the designed
w-functions to represent each class; Decide the observa-
tion belongs to class j if the distance between its RIUME
representation to the mean-RIUME representation of class
j is the minimum (depicted in blue).

2) Use designed w-functions to compute the RIUME repre-
sentation of an observation to be classified; Use designed
w-functions to compute the RIUME representations of the
observations in the training set. Decide the observation
belongs to object j if the nearest neighbor to its RIUME
representation is associated with class j (depicted in cyan).

3) Set the w-functions to be the indicator functions on the
level-sets and compute the fundamental RIUME rep-
resentation of an observation to be classified; Use the
mean-fundamental RIUME representation to represent
each class; Decide the observation belongs to class j if the
distance between its fundamental RIUME representation
to the mean fundamental RIUME representation of object
j is the minimum (depicted in red).

4) Set the w-functions to be the indicator functions on the
level-sets and compute the fundamental RIUME repre-
sentation of an observation to be classified; Compute the
fundamental RIUME representations of all observations in
the training set. Decide the observation belongs to object
j if the nearest neighbor to its RIUME representation is
associated with class j (depicted in green).

In evaluating the ROC, PD is estimated by counting the
number of correct decisions for class j out of the total number of
appearances of class j, averaged over classes. PFA is evaluated
by counting the number of incorrect decisions for class j out of
the total number of experiments in which object j did not appear,
averaged over classes.

Fig. 6. The ROC curves of the four tested classification strategies on ho-
mography transformed observations: Blue - Classifier based on the minimum
distance to the mean-RIUME representations of the different orbits, evaluated
with optimizedw-functions. Cyan - Classifier based on the minimum distance to
the RIUME representations of all the observations in the training set, evaluated
with optimized w-functions. Red - Classifier based on the minimum distance to
the mean fundamental RIUME representations of the different orbits. Green -
Classifier based on the minimum distance to the fundamental RIUME represen-
tations of all the observations in the training set.

The results of the experiment are summarized by the ROC
curves depicted in Fig. 5. We conclude that designing the set of
w-functions improves the performance of the classifier when the
classifier is based on the entire set of RIUME representations of
noisy observations in the training set, and when the classifier is
based on the mean-RIUME representation derived from the set
of noisy observations. Importantly, the use of the mean RIUME
subspace requires just one subspace comparison, and not many
comparisons to many noisy RIUME subspaces for each orbit.

Moreover, we find that using the designed set of w-functions
jointly with the mean-RIUME representations of the object
manifolds provides the best performance among all the tested
classification strategies.

To further test the robustness of the proposed optimization
procedure of thew-functions to model-mismatches, we repeated
the test described above but this time the geometric deformation
applied to each observation is a homography, which is clearly
off-the-model. From the experimental results summarized in
Fig. 6, it is concluded that in this case as well, using the designed
set ofw-functions jointly with the mean-RIUME representations
of the object manifolds provides the best performance among all
the tested classification strategies.

VII. ROBUST HOMOGRAPHY ESTIMATION USING LOCAL

MATCHED MANIFOLD DETECTION

In general, the observed scene is not a single plane undergoing
an affine transformation, and the radiometric variations across
observations are not necessarily monotonic. Nevertheless, al-
most any scene can be well approximated by its tessellation into
tiles, such that two observations on the same tile are related
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by simultaneous affine transformation of coordinates and a
monotonic mapping of the intensities. This amounts to locally
approximating a projective camera by an affine camera, [28].

In this and the next section we demonstrate, on sequences
obtained by moving a camera in a 3-D scene, the performance
of registration and transformation estimation algorithms that
employ the RIUME framework: It is shown that tessellating
the image into tiles, and modelling local transformations due to
camera movement as if each tile undergoes simultaneous affine
transformation of coordinates and monotonic mapping of the
intensities, the RIUME-based MMD provides dense registration
for an a-priori unknown and un-modeled scene structure. We
also demonstrate the performance gain of using the designed
set of w-functions in comparison with the performance of the
fundamental RIUME operator.

Thus, in the case where the goal is to estimate the homography
between two observations on a planar surface, the first step of the
proposed estimation procedure is to apply a point matching algo-
rithm, e.g., SIFT [24], in order to find tentatively corresponding
scene points in the two images. Given the two sets of tentatively
corresponding points, Delaunay triangulation is applied to one of
the images in order to tessellate it into a set of disjoint tiles. Each
of these tiles is assumed to be a planar surface, such that if a set
of three points defining a triangle in one image indeed matches a
set of three points in the other image, then the resulting triangular
surfaces will be related by simultaneous affine transformation
of coordinates and monotonic mapping of the intensities. As
we demonstrate in Section VIII the approach of approximating
joint continuous coordinate and intensity transformations, by
a set of piecewise affine geometric and monotonic radiometric
transformations can be applied to much more complex scenarios
than the homography discussed here.

Let H denote the homography matrix relating the coordinates
of two images I1 and I2 of the same planar surface (using
homogeneous coordinates notation). Using a point-matching al-
gorithm we obtainN hypothesized corresponding pairs of points
between I1 and I2: xi ↔ x′

i, i = 1, . . ., N . We next choose a
subset {yk}Kk=1, K ≤ N of the original set of correspondences
such that the points {yk}Kk=1 are spread as uniformly as possible
across the image. Applying the Delaunay triangulation to the
set of points {yk}Kk=1, a tessellation of I1 is obtained. The
tessellation of I1 is then mapped to a hypothesized tessellation
of I2 based on the set of correspondences to {yk}Kk=1. As a
result, each triangle in I1 is associated with an hypothesized
matching triangle in I2. The hypotheses on the similarity of pairs
of triangular tiles are then tested using the matched manifold
detector by evaluating (8) for each hypothesized corresponding
pair of tiles. In order to account for the unknown scale of the
objects, this stage is repeated, each time with a different average
spacing between the selected points and hence with different tile
dimensions.

We next provide empirical performance evaluation of the
proposed robust homography estimator. The method is tested
on three well known data-sets: Graffiti, Wall, and Light, [29],
including a total of 18 images in 3 different scenarios, for
which ground truth measurement of the true homography is
available.

Fig. 7. Registration of homography related images. In each row, the blue
lines on the left represent the Delaunay triangulation and the blue lines on the
right represent the mapping of the triangulation according to the hypothesized
point correspondences. Areas highlighted in green were found by the RIUME
MMD to represent the same object using the optimized set ofw-functions. Areas
highlighted in red were found to represent the same object using the fundamental
RIUME representations; The yellow triangles were identified as identical objects
for both choices of w-functions.

Fig. 7 provides an example of the results obtained from a
single stage of applying the RIUME MMD in two different cases
and for different magnitudes of the geometric deformations.
In each case, the two images, although taken from different
view points and with different illumination, contain objects in
common. The green shaded areas were identified as identical
objects in both images using the optimized set of w-functions;
The red shaded areas in both images were identified as identical
objects using the fundamental RIUME representations; The yel-
low triangles were identified as identical objects for both choices
of w-functions. Triangular tiles that result from false initial
point matches yield projection matrices that cannot be matched
with projection matrices of tiles in the other image. Hence,
they are excluded from the set of matching tiles (and hence
are not shaded). It is concluded that the piece-wise registration
of the observations yields denser coverage when the optimized
set of w-functions is employed. Since the scale of the scenes
in both images is a-priori unknown, this procedure is repeated
with various choices of reduced sets of tentatively corresponding
points, in varying density, in order to increase the probability of
choosing correctly matched tiles at the correct scale. Hence, a
decision that a pixel belongs to identical objects in both images
is made only if it is identified to belong to matching triangles
in both images, for at least two different tessellations obtained
by the foregoing procedure. The results of this dense matching
procedure when the optimized RIUME operator is employed,
vs. the results obtained using the fundamental RIUME operator
are illustrated in Fig. 8 and Fig. 9. It is concluded that the
optimized RIUME operator achieves a considerably denser and
larger coverage of the overlapping areas in the images, and low
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Fig. 8. Dense matching of related images using a locally affine geometric
model and locally monotonic radiometric model. Top: using the fundamental
RIUME operator and Bottom: using the optimized RIUME operator. The green
shaded areas in both images were identified by the matched manifold detector
as identical objects.

Fig. 9. Dense matching of related images using a locally affine geometric
model and locally monotonic radiometric model. Top: using the fundamental
RIUME operator and Bottom: using the optimized RIUME operator. The green
shaded areas in both images were identified by the matched manifold detector
as identical objects.

false coverage rates. Hence, it provides a larger coverage of
correctly matched points.

The points that were found to match based on the locally
affine model (see for example the green-shaded points in Fig. 8
and Fig. 9) are employed in the next stage to obtain Ĥ, an
estimate of the homography H, using the DLT linear estimation
algorithm, [28]. The steps of the MMD-DLT robust estimator
are summarized in Algorithm 1.

Algorithm 1: Robust MMD-DLT Homography Estimation.
1: Find hypothesized point correspondences between I1

and I2.
2: Uniformly dilute correspondences.
3: Tessellate the image according to the diluted point

correspondences.
4: Match triangles using the RIUME based matched

manifold detector (MMD).
5: Repeat steps 2-4 with varying spacing between the

chosen matches.
6: Obtain Ĥ from the DLT algorithm using the points in

triangles that were found to match.

Next, we numerically evaluate the performance of the MMD-
DLT homography estimator, implemented using the fundamen-
tal RIUME operator, and its implementation based on the opti-
mized RIUME operator, relative to ground truth measurements
of the homography transformations. The performance is also
compared to the performance of the standard homography-
RANSAC estimator, [28]. We further compare the performance
of these methods to the performance of two state of the art DNN-
based Deep-Homography estimators [30] and [31]. We note
that the deep-homography estimation networks were designed
and optimized for the specific task of homography estimation.
The MMD-DLT homography estimator is an implementation
using the DLT algorithm and the RIUME-MMD with no special
training or adaptation of the RIUME-MMD to the case of
homography estimation.

For the two variants of the MMD-DLT homography estimator
we employ SIFT to obtain tentative point matches, and then
follow Steps 1 to 6 of Algorithm 1. In the standard homography-
RANSAC implementation, the same tentative point matches
obtained by the SIFT algorithm are employed. The quantitative
analysis presented in Table I was evaluated on two datasets
for which ground truth information is available: The first is
“RE” [31], for which manually labeled corresponding points in
homography related images are provided. The second dataset
is “Graffiti” [29], where measurements of the ground truth
homography relating any pair of observations is provided. In
order to better assess the performance of the different methods,
and since [31] is designed for small baseline homographies, we
defined based on the ground truth homographies, two different
subsets of Graffiti: One is made of pairs of images with a small
baseline, and represents the scenario of “weak homography”.
The other subset is made of pairs of images with a wide baseline,
and represents the scenario of “strong homography”. The error
metric in Table I is the average �2 norm of the reprojection
error (in pixels) between a point as projected by the estimated
homography and its labeled ground-truth corresponding point
(also used by [31]). For each dataset the results of the best
performing method appear in bold.

We conclude from the results in Table I that for the “RE”
dataset, on which the two Deep Homography methods were
trained and optimized, the performance of all tested methods
is similar, with a slight advantage to the Deep Homography
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TABLE I
AVERAGED �2 REPROJECTION ERROR EVALUATED ON “RE” AND “GRAFFITI” DATASETS

Fig. 10. Experimental cumulative probability distribution of the error in estimating the homography by the evaluated estimators, for the small baseline subset,
wide baseline subset, and the entire dataset. e is defined in (23).

methods. However, on the Graffiti dataset the two versions of
MMD-DLT, and the standard homography-RANSAC estimator
outperform the Deep Homography methods, even for the case
of small baseline (weak homography). The experimental results
further indicate that the MMD implemented using the optimized
RIUME operator outperforms the other estimators with a signif-
icant advantage in the more difficult scenarios of wide baseline
homography.

In order to provide a more detailed evaluation of the perfor-
mance of the MMD-DLT estimator, in comparison to that of
the alternative estimators, Fig. 10 provides the experimental cu-
mulative distribution function of the error between the location
of each image point based on the true homography relative to
its estimated location, evaluated on the Graffiti dataset. More
specifically, the employed point-wise error metric (in pixels) is
defined as

e(Ĥ) =
∥∥∥(H− Ĥ)x

∥∥∥
2
+
∥∥∥(H−1 − Ĥ−1)x′

∥∥∥
2

(23)

where H is the ground truth homography and Ĥ is its
estimate.

As shown in Fig. 10, the probability mass of the MMD-DLT
estimation errors is concentrated at low errors. It is concluded
that both versions of the MMD-DLT homography estimator
outperform the homography-RANSAC estimator and the Deep-
Homography solutions. We further conclude using Fig. 10 and
Table I that the use of the optimized RIUME in the MMD-DLT

algorithm provides performance gain relative to the performance
of the MMD-DLT algorithm implemented using the fundamen-
tal RIUME operator. This gain, is more significant in the more
challenging scenarios where the baseline between observations
is large, and deformations are larger. The gain is achieved due
to the denser and larger coverage of correctly matched points as
demonstrated in Fig. 8 and Fig. 9.

Finally, note that the optimized w-functions were obtained
using the derivation in Section V-B aimed at finding the optimal
set ofw-functions that best separates the RIUME representations
of the different objects considered. They were trained using the
experimental set-up described in Section VI-A, that contains
none of the images analyzed in this section. Thus, the exper-
imental results of this section, on homography estimation and
dense registration, demonstrate the generality and applicability
of the design procedure of the optimized w-functions, for both
classification and registration.

VIII. MATCHED MANIFOLD DETECTION FOR DENSE WIDE

BASELINE REGISTRATION

Next, we demonstrate the effectiveness of the optimized
Matched Manifold Detector for wide baseline registration of
a complex scene, where the shapes of the objects are a-priori
unknown and no closed-form model of the transformation is
known. The method employs the tessellation-based MMD-and-
registration. Each pair of frames is tesselated into tiles, and
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Fig. 11. Dense registration of wide base-line related images: The observed scene is tessellated into a set of tiles such that the deformation of each one is well
approximated by an affine geometric transformation and a monotonic transformation of the measured intensities. Top: using the fundamental RIUME operator;
Bottom: using the optimized RIUME operator. Green shaded areas in each of the images in a pair, were identified as identical objects.

the matching of the tiles is tested using the matched manifold
detector. Once a pair of tiles has been verified to match, the
affine transformation between the tiles is evaluated and hence
the transformation of their interior points is known from one
frame to the other. Points are considered to be reliably tracked
only if they were identified to belong to matching triangles in
both images, for at least two different tessellations of the pair of
images. In Fig. 11 we provide the results of the dense registration
of two images taken from different angles and distances from
the scene and at different illumination conditions. We evalu-
ate the results obtained by applying the fundamental RIUME
operator, in comparison to the dense registration results of the
optimized RIUME operator, for the same decision threshold in
(8) when deciding whether the distance between the RIUME
projection matrices of two triangular patches is indeed close
enough to zero. Green shaded areas in both images were iden-
tified as identical objects in both images. It is concluded that
the optimized RIUME operator provides a higher rate of correct
detections, and hence a considerably larger and denser coverage
of the overlapping areas in the images, at low false alarm rates.
These results have many applications in structure-from-motion
modelling problems.

IX. SUMMARY

We have considered the problem of matched manifold de-
tection and classification of noisy images, each undergoing
geometric and radiometric deformations. For the case where
the geometric deformation is affine and the radiometric defor-
mation is monotonic, the RIUME maps the orbit of possible
observations on each object to a distinct linear subspace. In
the presence of observation noise, the observations do not lie
strictly on the orbit and the resulting RIUME subspaces are
fluctuations around the noise-free subspace. We have described
a method for averaging these noisy subspaces in order to es-
timate the mean subspace representation for the orbit of each
image under affine coordinate transformation. To optimize the
performance of the matched manifold detector in the presence of
observation noise, an analytic solution for choosing the RIUME
operators is derived, such that the G-invariant representation of
the denoised manifold is obtained without explicitly first obtain-
ing the denoised manifold. It is shown that for object detection
and classification, the effects of noise are reduced and the sepa-
rability between observations originating from different orbits is
improved by using the designed set of companding w-functions
jointly with the mean subspace representation of each orbit.
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For registration applications, the RIUME is employed in order
to provide a different type of information than existing point
matching algorithms on the one hand, or global registration
algorithms, on the other hand. Point matching algorithms aim
at finding key points in the observed image and characterizing
them through the properties of small regions around them. These
local approaches use relatively small amounts of information
(small patches) in generating the descriptor of a key-point. As a
consequence they result in non distinctive descriptors, which in
turn lead to high rates of false matches that need to be eliminated
before any further processing can take place. Such verification
procedures require knowledge of the global geometric trans-
formation model. A prominent example is the usage of the
RANSAC algorithm and its variants to eliminate faulty matches.
However, such a global geometric transformation model is often
unknown. Global registration algorithms may be applied only
when the family of expected geometric deformations is a-priori
known, and the radiometric deformations between the two
observations are small. The RIUME based matched manifold
detection scheme provides a method for efficiently combining
the advantages of the local, key-point methods, and the global
methods. It thus enables dense matching and registration of
complex scenes where the shapes of the objects are a-priori
unknown and no closed-form model of the transformation is
known.
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