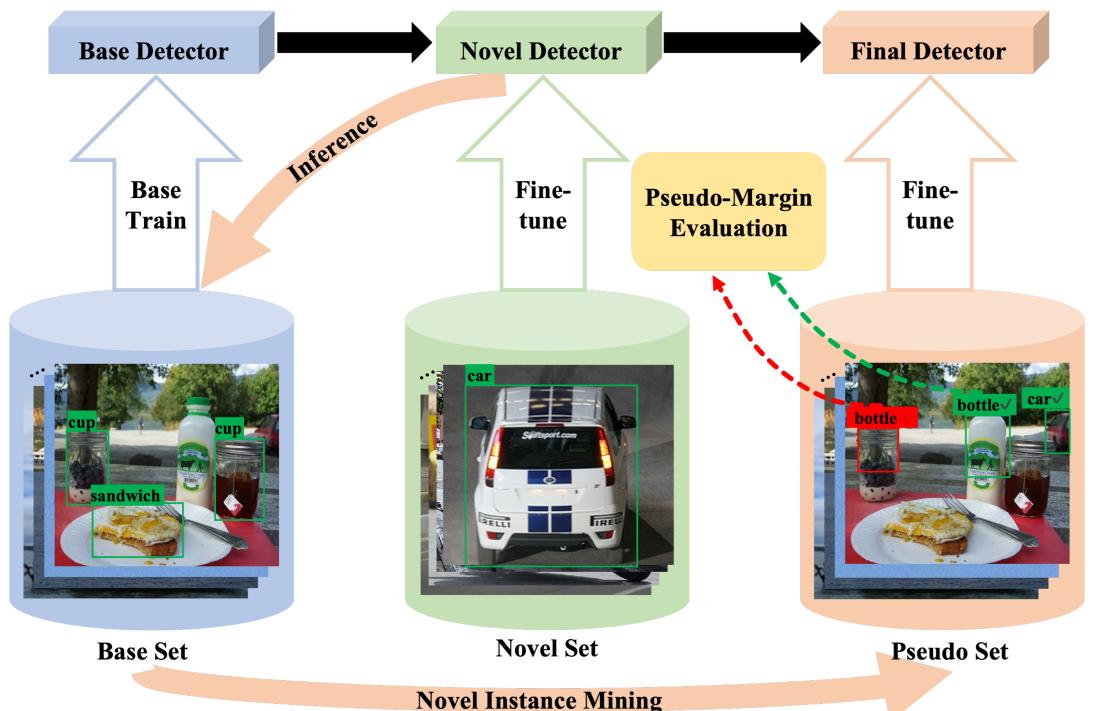


#4557 Novel Instance Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

¹Faculty of Electrical Engineering and Computer Science, Ningbo University, China ²School of Information and Control Engineering, China University of Mining and Technology, China ³SenseTime Research, China

Introduction

The unlabeled novel instances in the base set were untouched in previous works, which can be re-used to enhance the FSOD performance. Thus, a new instance mining model is proposed in this paper to excavate the novel samples from the base set. The detector is thus finetuned again by these additional free novel instances. Meanwhile, a novel pseudo-margin evaluation algorithm is designed to address the quality problem of pseudo-labels brought by those new novel instances.



A pseudo-margin evaluation model is proposed to introduce a new way to exploit the error-prone pseudolabels by evaluating the uncertainty scores of both correct and incorrect pseudo-labels.

Novel Instance Mining

The key of our proposed model is to excavate more novel instances from the base set $D_b = \{(x_i, y_i^{(b)})\}_{i=1}^N$ for FSOD. the pseudo-label $\tilde{y}_i^{(n)}$ of novel instances for x_i can be defined as,

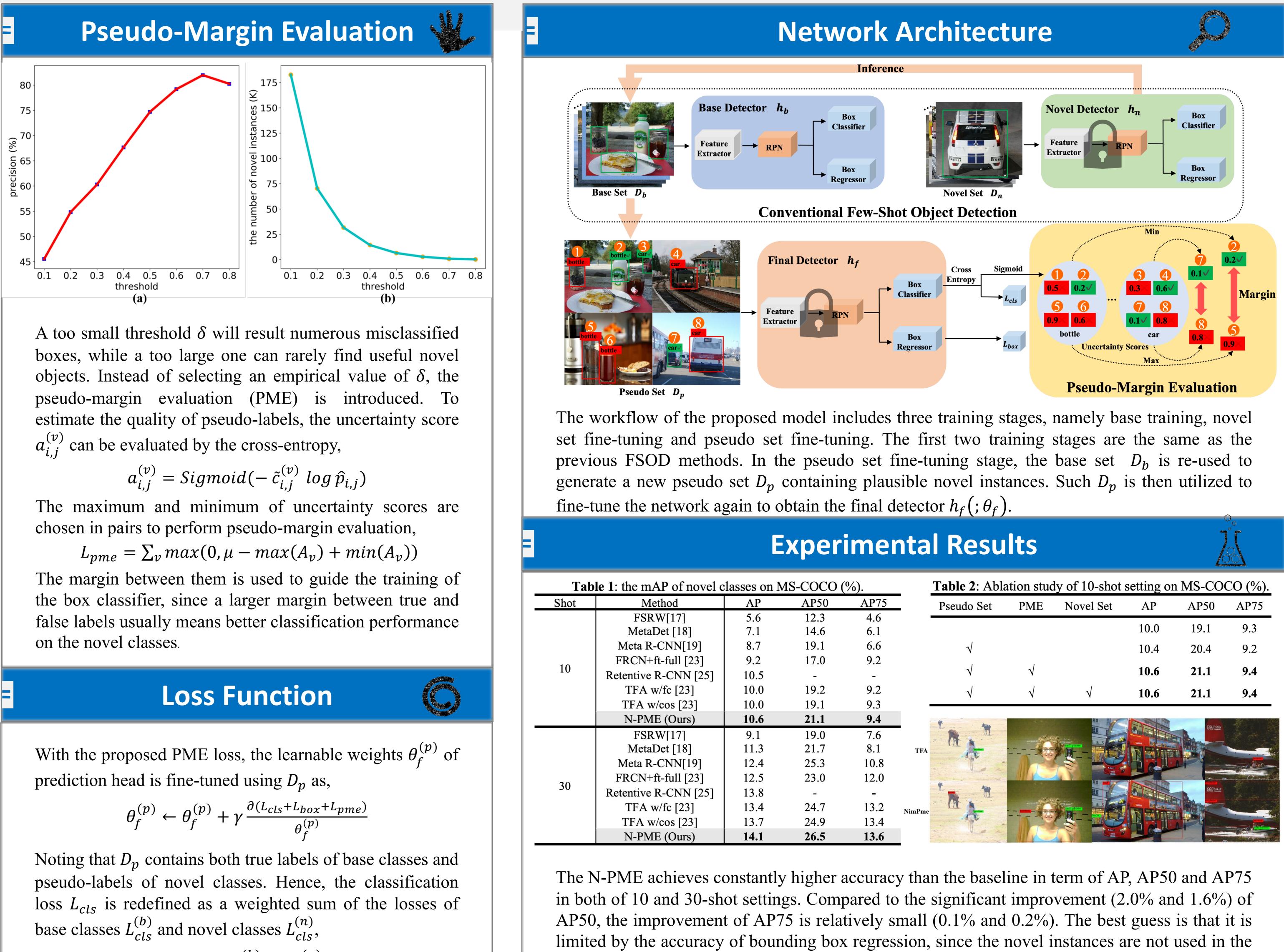
$$\tilde{y}_{i}^{(n)} = \left\{ \left(\hat{c}_{i,k}^{(n)}, \hat{l}_{i,k}^{(n)} \right) | \hat{s}_{i,k}^{(n)} > \delta \right\}_{k=1}^{K_{i}}$$

Going through the whole dataset of D_b to collect N_p images containing pseudo-labels $\tilde{y}_i^{(n)}$, a new pseudo set D_p can then be formed as,

$$D_p = \left\{ (x_i, \tilde{y}_i^{(n)} \cup y_i^{(b)}) \right\}_{i=1}^{N_p}$$

To avoid class imbalance, original annotations $y_i^{(b)}$ of base classes are retained in D_p . It is also worth noting that the pseudo-label $\tilde{y}_{i}^{(n)}$ is not always true.

Weijie Liu¹, Chong Wang^{1,2*}, Shenghao Yu¹, Jun Wang², Jiafei Wu³



$$a_{i,j}^{(v)} = Sigmoid(-\tilde{c}_{i,j}^{(v)} \log \hat{p}_{i,j})$$

$$\theta_{f}^{(p)} \leftarrow \theta_{f}^{(p)} + \gamma \frac{\partial (L_{cls} + L_{box} + L_{pme})}{\theta_{f}^{(p)}}$$

$$L_{cls} = \alpha L_{cls}^{(b)} + \beta L_{cls}^{(n)}$$

The regression loss L_{box} only consider the RoIs from base classes, which is defined as smooth L1 loss.

regression loss. This can also be observed in the visualization of detection results. as the result shown in Table 2, there is no difference from the one only using D_p . The best guess is that the detector has converged on the novel set with a small number of training samples. Thus, it could not improve the performance further.

2: Ablation study of 10-shot setting on MS-COCO (%).							
o Set	PME	Novel Set	AP	AP50	AP75		
			10.0	19.1	9.3		
			10.4	20.4	9.2		
	\checkmark		10.6	21.1	9.4		
	\checkmark	\checkmark	10.6	21.1	9.4		

el pore	CULSER TURE TALEET