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The energy consumption problem
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GFLOPs

Compute power of common deep learning models
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Edge computing

Advantages
» Rapid decision making
» Efficient pre-processing

 Privacy-preserving applications

. Energy consumption

*ABI Research, Artificial intelligence and Machine Learning, 2 QTR 2021
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Techniques to reduce consumption

Software

Pruning
Quantization

Distillation

Efficient operators

Event-based
processing
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Hardware

Weights / neurons Semi-conductor

. . process fech
8bits, 4bits, ...

Teacher - student Resource
optimization

Separable convolutions, etc... Specialized units

Spiking neural networks (SNNs) Event-based
processing

FINFET, Fully Depleted Silicon-
On-Insulator, efc...

Power management, flexible
accelerators, etc...

Convolution accelerators,
zero-skipping, eftc...

Neuromorphic hardware: Intel
Loihi, IBM TrueNorth,
SpiNNaker, etc...
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Artificial vs Spiking Neurons
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Artifical Neural Network
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Information processing in
arfificial neural networks (ANN)

Spiking Neural Network
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Information processing in
spiking neural networks (SNN)
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Metrics

Computation cost for ANN : ‘Effective’ FLOPS
EFLOPS = ) (W) X ¢(A11) + ¢(B)

¢(x) =x #0

Computation cost for SNN: SynOps
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SynOps = z fout,l X s;(t)
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GOAL:

Increase sparsity to reduce the
computational cost

Exploit the natural sparsity of
SNINs

SNNs training is difficult with
common back-propagation
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Experimental setup
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“Conversion of continuous-valued deep networks to efficient event-driven networks
forimage classification”, Rueckauer et al., 2017
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Sparsity

Sparsity reduces computational cost

Pruning of weights or activation maps

Neuron (activity) pruning

Weight pruning
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Related work

/hao et al., 2021; Pellegrini et al., 2021 — SNN trained from scratch
Sorbaro et al., 2020 — Optimize SynOps

Ruckauer et al., 2017 - L, regularization on weights
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Constraint: Regularizers

Enforce sparsity using regularizers on activity maps

/

Loss landscape for regularization methods used in our experiments.

Loss function:

L= CE +/Lregzl/)(xl)
l

Activity map (X)
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Results on MNIST
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Activity regularization effect

MNIST
Computation cost of MLP Computational cost of LeNet-5
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Activity regularization effect

CIFAR-10
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Conclusion

Activity regularization of ANNs is a simple way to reduce the number of SynOps in
converted SNNs

Hoyer regularization has limited effect compared to L,-regularization

SynOps and EFLOPs are not correlated, as a reduction in EFLOPs does not necessary
result in a similar reduction in SynOps

Better approximations of L, can be found, as L, 5, iIs foo aggressive
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