IEEE ICASSP 2022

Optimizing the Consumption of Spiking Neural Networks with Activity Regularization

Simon Narduzzi^{1,2} Siavash A. Bigdeli¹ Shih-Chii Liu² L. Andrea Dunbar¹

¹ CSEM, Neuchâtel, Switzerland ² Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland

The energy consumption problem

Compute power of common deep learning models

" CSem

2

Edge computing

Advantages

- Rapid decision making
- Efficient pre-processing
- Privacy-preserving applications

3

MAJOR CHALLENGE: Energy consumption

*ABI Research, Artificial intelligence and Machine Learning, 2 QTR 2021

Techniques to reduce consumption

Software		Hardware	
Pruning Quantization	Weights / neurons 8bits, 4bits,	Semi-conductor process tech	FinFET, Fully Depleted Silicon- On-Insulator, etc
Distillation	Teacher – student	Resource optimization	Power management, flexible accelerators, etc
Efficient operators	Separable convolutions, etc	Specialized units	Convolution accelerators, zero-skipping, etc
Event-based processing	Spiking neural networks (SNNs)	Event-based processing	Neuromorphic hardware: Intel Loihi, IBM TrueNorth, SpiNNaker, etc

4

Artificial vs Spiking Neurons

Artifical Neural Network

$$z = \sigma_{thr} (\sum_{j=1}^{N} W_{ij} x_{t,j} + b_i)$$

5

Information processing in spiking neural networks (SNN)

Information processing in artificial neural networks (ANN)

Metrics

Computation cost for ANN : 'Effective' FLOPS

$$EFLOPS = \sum_{l=1}^{L} \phi(W_l) \times \phi(A_{l-1}) + \phi(B_l)$$

$$\phi(x) \coloneqq x \neq 0$$

Computation cost for SNN: SynOps

$$SynOps = \sum_{t=1}^{T} \sum_{l=1}^{L} f_{out,l} \times s_l(t)$$

"A million spiking-neuron integrated circuit with a scalable communication network and interface", Merolla et al, 2014

6

GOAL:

Increase sparsity to reduce the computational cost

7

DEA: Exploit the natural sparsity of SNNs

PROBLEM: SNNs training is difficult with common back-propagation

Experimental setup

"Conversion of continuous-valued deep networks to efficient event-driven networks for image classification", *Rueckauer et al.*, 2017

8

- Sparsity reduces computational cost
- Pruning of weights or activation maps

Weight pruning

9

Neuron (activity) pruning

Related work

- Zhao et al., 2021; Pellegrini et al., 2021 SNN trained from scratch
- Sorbaro et al., 2020 Optimize SynOps
- Rückauer et al., 2017 L_1 regularization on weights

• Ours:

- L_p-regularization and Hoyer,
- Comparison between ANN and SNN,
- EFLOPs

" csem

Constraint: Regularizers

• Enforce sparsity using regularizers on activity maps

Loss landscape for regularization methods used in our experiments.

Loss function:

$$\mathcal{L} = CE + \lambda_{reg} \sum_{l} \psi(X_l)$$

11

Activity map (X)

Results on MNIST

(12)

Results of the MLP with respect to λ_{reg}

Activity regularization effect

" csem

Activity regularization effect

CIFAR-10

14)

Computation cost of LeNet-5

EFLOPS SynOps

Conclusion

- Activity regularization of ANNs is a simple way to reduce the number of SynOps in converted SNNs
- Hoyer regularization has limited effect compared to L_p -regularization
- SynOps and EFLOPs are not correlated, as a reduction in EFLOPs does not necessary result in a similar reduction in SynOps
- Better approximations of L_0 can be found, as $L_{0.01}$ is too aggressive

THANK YOU

