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The energy consumption problem
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Edge computing

Advantages

• Rapid decision making

• Efficient pre-processing

• Privacy-preserving applications

1.8B
by 2026*

*ABI Research, Artificial intelligence and Machine Learning, 2 QTR 2021

MAJOR CHALLENGE: Energy consumption

https://youexec.com/plus
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Techniques to reduce consumption

Pruning Weights / neurons

Quantization 8bits, 4bits, …

Distillation Teacher – student

Efficient operators Separable convolutions, etc…

Event-based

processing

Spiking neural networks (SNNs) Event-based

processing

Neuromorphic hardware: Intel 

Loihi, IBM TrueNorth, 

SpiNNaker, etc…

Semi-conductor

process tech

Specialized units

Resource 

optimization

FinFET, Fully Depleted Silicon-

On-Insulator, etc…

Power management, flexible 

accelerators, etc…

Convolution accelerators, 

zero-skipping, etc…

Software Hardware
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Artificial vs Spiking Neurons

Information processing in 
artificial neural networks (ANN)

Information processing in 
spiking neural networks (SNN)

𝑧 = 𝜎𝑡ℎ𝑟(

𝑗=1

𝑁

𝑊𝑖𝑗𝑥𝑡,𝑗 + 𝑏𝑖)𝑧 = 𝜎 (

𝑗=1

𝑁

𝑊𝑖𝑗𝑥𝑗 + 𝑏𝑖)

Artifical Neural Network Spiking Neural Network
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Metrics

Computation cost for ANN : ‘Effective’ FLOPS

𝐸𝐹𝐿𝑂𝑃𝑆 =

𝑙=1

𝐿

𝜙 𝑊𝑙 × 𝜙 𝐴𝑙−1 + 𝜙 𝐵𝑙

𝜙 𝑥 ≔ 𝑥 ≠ 0

Computation cost for SNN: SynOps

𝑆𝑦𝑛𝑂𝑝𝑠 =

𝑡=1

𝑇



𝑙=1

𝐿

𝑓𝑜𝑢𝑡,𝑙 × 𝑠𝑙(𝑡)

“A million spiking-neuron integrated circuit with a scalable 

communication network and interface”, Merolla et al, 2014
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GOAL: Increase sparsity to reduce the 

computational cost

IDEA: Exploit the natural sparsity of 

SNNs

PROBLEM: SNNs training is difficult with

common back-propagation

https://youexec.com/plus
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Experimental setup

NN

validation

train

test

SNNToolbox NNspiking

EFLOPS Spikes, 

SynOps

“Conversion of continuous-valued deep networks to efficient event-driven networks 

for image classification”, Rueckauer et al., 2017
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Sparsity

• Sparsity reduces computational cost

• Pruning of weights or activation maps

Weight pruning Neuron (activity) pruning

https://youexec.com/plus
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Related work

• Zhao et al., 2021; Pellegrini et al., 2021 – SNN trained from scratch

• Sorbaro et al., 2020 – Optimize SynOps

• Rückauer et al., 2017 – L1 regularization on weights

• Ours:

• Lp-regularization and Hoyer,

• Comparison between ANN and SNN,

• EFLOPs

https://youexec.com/plus
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Constraint: Regularizers

• Enforce sparsity using regularizers on activity maps

Activity map (X)

Loss function:

ℒ = 𝐶𝐸 + 𝜆𝑟𝑒𝑔

𝑙

𝜓(𝑋𝑙)

Loss landscape for regularization methods used in our experiments.

https://youexec.com/plus
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Results on MNIST

Results of the MLP with respect to 𝜆𝑟𝑒𝑔

https://youexec.com/plus
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Activity regularization effect
MNIST
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Activity regularization effect
CIFAR-10
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Conclusion

• Activity regularization of ANNs is a simple way to reduce the number of SynOps in 

converted SNNs

• Hoyer regularization has limited effect compared to Lp–regularization

• SynOps and EFLOPs are not correlated, as a reduction in EFLOPs does not necessary 

result in a similar reduction in SynOps

• Better approximations of L0 can be found, as L0.01 is too aggressive

https://youexec.com/plus
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