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Today, deep learning models are regularly
deployed at the edge, allowing local real-time
decision-making, efficient pre-processing, and
privacy-preserving applications. Optimizations
have been developed in the past few years to
allow the deployment of these networks within
restricted resource environments.

Quantization, pruning, and distillation are some
of them, which are applied either during the
training or post-training of the neural network.
Specialized hardware accelerators and
neuromorphic hardware platforms also target
ultra-low power applications using sparse
processing. In our experiment, we explore the
sparsification of artificial neural networks (ANN)
using different activity regularizers and their
effect on the post-training conversion of spiking
neural networks (SNN).

Spiking neural networks
In the brain, most neurons use events (called
spikes) to encode and transmit information.
Spiking neural networks (SNNs) are
mathematical models that imitate this behavior.
The sparse nature of spikes makes SNNs suitable
for low-power inference. However, their discrete
nature makes them hard to train with
conventional backpropagation techniques,
and their accuracy is not competitive with ANN
performance. Therefore, methods have been
developed to create SNNs from pre-trained
ANN models.

Regularization in ANN and SNNs
Regularization is a technique to constrain the parameters or the activations of a neural
network. Sparsification can be obtained using weight regularization and activity
regularization. In our work, we sparsify the activity of the SNN by regularizing a pre-trained
ANN and then converting the ANN to a spiking form.

We train an ANN and monitor its convergence using the validation set. We then convert [2]
it to an SNN using the training set for the calibration. We then test both the ANN and SNN to
obtain the computational cost.
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Conclusion
Activity regularization of ANNs is a simple way to
reduce the number of SynOps in converted
SNNs. Although surrogate Lp-norms perform well,
better approximations of L0-norm can be
explored. Post-conversion fine-tuning of the SNNs
and simultaneous regularization of weights and
activations are other potential improvements
that could lead to very efficient networks.
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The regularization was applied on the activation
maps of two architectures: a multilayer
perceptron and LeNet-5, on both MNIST and
CIFAR-10 datasets. On MNIST, the computational
cost of the SNN can be reduced by 96% and
94% on the MLP and LeNet-5 respectively, with
no accuracy loss.

Loss landscape for regularization methods used in our experiments.

Results

L0-norm exactly counts the number of non-zero elements in a vector. This norm has no
gradient, therefore we use surrogates L0.5 and L0.01 as approximations to L0-norm. We
compare with other regularizers such as L2-norm, L1-norm, Hoyer (H) and the squared version
of Hoyer (HS).

Computational cost of ANN and SNN
We assess the efficacy of the sparsity by measuring the reduction in computational cost on
an ANN and the equivalent SNN. EFLOPS describes the ANN computational cost by
counting operations not involving zero-values, and SynOps [1] describes the SNN
computational cost.

Training and conversion pipeline used in our experiments.
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