



# Multiview Long-Short Spatial Contrastive Learning for 3D Medical Image Analysis

Gongpeng Cao<sup>1</sup>, Yiping Wang<sup>1</sup>, Manli Zhang<sup>1</sup>, Jing Zhang<sup>1</sup>, Guixia Kang<sup>1</sup>, Xin Xu<sup>2</sup>

 <sup>1</sup>Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
<sup>2</sup>Department of Neurosurgery, General Hospital of PLA, Beijing 100853, China

ICASSP 2022

# Introduction

## **Background:**

- Supervised deep learning requires sufficient labeled data.
  - **D** Expert knowledge in specific fields.
  - **Time-consuming and Laborious.**
- Self-supervised learning (SSL):
  - □ Without human-annotations.
  - Generic representations transferred to downstream tasks.



# **Contrastive Learning:**



- An effective implementation of the self-supervised learning.
- Contrastive learning trains neural networks to discriminate between "positive" pairs (v<sup>i</sup><sub>1</sub>, v<sup>i</sup><sub>2</sub>) and "negative" pairs (v<sup>i</sup><sub>1</sub>, v<sup>j</sup><sub>2</sub>)<sub>j≠i</sub>.
- Learning is formulated as minimizing a contrastive loss (we use InfoNCE in this paper).

$$L_N(v_1, v_2) = -\mathbb{E}\left[\log \frac{e^{h(v_1^i, v_2^i)}}{\sum_{j=1}^{K+1} e^{h(v_1^i, v_2^j)}}\right]$$

# Motivation

Two limitations of existing contrasting strategies when applied to 3D medical images:

- Ignore the intrinsic structural similarity.
- Ignore local representation.

## **Observation 1:**

The information shared between three views (axial, coronal and sagittal views) can capture the global representation of volumetric medical image.

#### **Observation 2:**

Matching the short spatial clip to long spatial clip forces the model to extrapolate local information.





# **Method:** Multiview Contrasting Strategy & Long-Short Spatial Contrasting Strategy

#### **Multiview Contrasting Strategy:**

> To learn global representation, we need to maximize the mutual information between three views( $v_a, v_c, v_s$ )

 $\max\{I(v_a; v_c) + I(v_a; v_s) + I(v_c; v_s)\}$ 

InfoNCE loss can estimate the lower bound of mutual information. For two views v<sub>1</sub>, v<sub>2</sub>:

 $I(v_1; v_2) \ge \log(K) - L_N(v_1, v_2)$ 

➤ Maximizing mutual information between three views → Multiview contrastive learning:

 $L_{multiview} = L_N(v_a, v_c) + L_N(v_a, v_s) + L_N(v_c, v_s)$ 

#### **Long-Short Spatial Contrasting Strategy:**

> Maximizing representation similarity between a long spatial clip  $v_L$  and a much shorter spatial clip  $v_S$ :

 $L_{long-short} = L_N(v_S, v_L)$ 

Matching the short-clip representation to the long-clip representation forces the model to understand and recognize the structure and correlation of local tissues in volumetric medical images.

# **Method: Multiview Long-Short Spatial Contrastive Learning Framework**



# **Clip Sampling:**

- Sample axial, coronal and sagittal clips from a 3D volumetric medical image with C slices and a stride of  $\delta_L$ .
- ► Regard the above axial clip as the long spatial clip and then randomly sample *C* axial slices with spatial stride  $\delta_S(\delta_S < \delta_L)$  as the short spatial clip.

## **Network Architecture:**

- One online encoder:
  - a backbone + a projector head (2-layer MLP) + a prediction head (2-layer MLP).
  - □ updated by back-propagation.
  - the backbone will be transferred to downstream tasks after pre-training.
- > Three target encoders: (share weights)
  - □ a backbone + a projector head (2-layer MLP)
  - **u**pdated in the manner of momentum.
  - □ memory queue to store previous representations.
  - discarded after pre-training.

## **Contrastive Loss:**

$$L_{mlsscl} = \alpha L_{multiview} + \beta L_{long\_short}$$

# **Experiments: Pre-training on Large-Scale Unlabeled Dataset**

#### **Pre-training Dataset:**

> ADNI pre-training set (5953 T1-weighted MRI scans).

## Instantiation of Network:

- > AD classification task:
  - □ 3D ResNet-18 as backbone.
- ➤ MS lesion segmentation task:
  - □ 3D UNet-based encoder as backbone.

# **Optimization:**

➢ We pre-train models on ADNI pre-training set for 100 epochs with SGD optimizer.

Other details can be found in paper.

# **Experiments:** Transferring Learned Features to AD Classification

| Table 1. | Results | (mean±std) | ) for AD | classification ( | AD vs. | HC | ) on the | ADNI-AD | classification test set. |
|----------|---------|------------|----------|------------------|--------|----|----------|---------|--------------------------|
|----------|---------|------------|----------|------------------|--------|----|----------|---------|--------------------------|

| Method                | ACC               | SEN               | SPE                            | AUC                            |
|-----------------------|-------------------|-------------------|--------------------------------|--------------------------------|
| Training-from-Scratch | $0.793 \pm 0.011$ | $0.874 \pm 0.055$ | $0.711 \pm 0.058$              | $0.896 \pm 0.006$              |
| BYOL [12]             | $0.809 \pm 0.004$ | $0.866 \pm 0.032$ | $0.752 \pm 0.037$              | $0.886 \pm 0.016$              |
| MoCo [10]             | $0.825 \pm 0.020$ | $0.886 \pm 0.043$ | $0.764 \pm 0.060$              | $0.895 \pm 0.001$              |
| Model Genesis [8]     | $0.827 \pm 0.004$ | $0.911 \pm 0.061$ | $0.744 \pm 0.061$              | $0.904 \pm 0.009$              |
| Age-Aware [13]        | $0.831 \pm 0.007$ | $0.882 \pm 0.007$ | $0.780 \pm 0.012$              | $0.899 \pm 0.011$              |
| MLSSCL                | $0.858 \pm 0.013$ | $0.911 \pm 0.019$ | $\boldsymbol{0.805 \pm 0.044}$ | $\boldsymbol{0.907 \pm 0.012}$ |

- ➤ MLSSCL outperforms other SSL methods: ↑ 2.7%(ACC), ↑ 2.5%(SPE)

➤ MLSSCL can effectively deal with the situation with few labeled training samples. 70% labeled data (MLSSCL) ≈ 100% labeled data (training-fromscratch)



**Fig. 2.** The AD classification performance of networks trained with different amounts of labeled data.

**Table 2**. The segmentation results of different approaches onthe ISBI 2015 longitudinal MS lesion segmentation test set.

| Method                | <b>DSC</b> <sup>†</sup> | <b>PPV</b> <sup>†</sup> | LTPR <sup>†</sup> | LFPR <sup>†</sup> |
|-----------------------|-------------------------|-------------------------|-------------------|-------------------|
| Training-from-Scratch | 0.6176                  | 0.8229                  | 0.4451            | 0.3485            |
| SSL                   |                         |                         |                   |                   |
| Age-Aware [13]        | 0.6320                  | 0.8103                  | 0.4586            | 0.3034            |
| BYOL [12]             | 0.6337                  | 0.7991                  | 0.4675            | 0.3442            |
| MoCo [10]             | 0.6369                  | 0.7972                  | 0.4641            | 0.3092            |
| Model Genesis [8]     | 0.6434                  | 0.8200                  | 0.4647            | 0.3082            |
| MS SOTA               |                         |                         |                   |                   |
| Aslania et al. [3]    | 0.6114                  | 0.8992                  | 0.4103            | 0.1393            |
| Andermatt et al. [18] | 0.6298                  | 0.8446                  | 0.4870            | 0.2013            |
| Valverde et al. [4]   | 0.6304                  | 0.7866                  | 0.3669            | 0.1529            |
| Hu et al. [5]         | 0.6345                  | 0.8682                  | 0.4787            | 0.1299            |
| MLSSCL                | 0.6482                  | 0.8007                  | 0.4933            | 0.2796            |

MLSSCL consistently outperforms training-from-scratch and other SSL methods. Compared with training-from-sc ratch:

↑ 3.06%(DSC), ↑ 4.82%(LTPR), ↑ 6.89%(LFPR)

MLSSCL still achieves higher DSC and LTPR compared to SOTA segmentation methods.

# **Experiments:** Ablation to contrasting strategies on AD classification

**Table 3.** Ablation to contrasting strategies on AD classifica-tion task (mean  $\pm$  std).

| <b>Contrasting Strategy</b> | ACC               | AUC               |
|-----------------------------|-------------------|-------------------|
| Long-Short                  | $0.823 \pm 0.012$ | $0.892 \pm 0.014$ |
| Multiview                   | $0.833 \pm 0.027$ | $0.906\pm0.024$   |
| Multiview & Long-Short      | $0.858 \pm 0.013$ | $0.907 \pm 0.012$ |

The results demonstrate the complementarity of global representation and local representation.

- ✓ We introduce multiview contrasting strategy to learn global representations by maximizing the mutual information between three views of the same volumetric medical image.
- ✓ We introduce long-short spatial contrasting strategy to learn local representations by matching a short spatial clip to a long spatial clip in the latent space under the given view.
- ✓ We propose multiview long-short spatial contrastive learning (MLSSCL) framework to combine these two contrasting strategies, which can effectively learn generic 3D representations.
- ✓ Extensive experimental results showed that MLSSCL outperformed training-from-scratch method, especially when fine-tuned on only small amounts of labeled data, and also showed a clear superiority compared with other self-supervised learning methods.





# Thank you!

E-mail: gpcao@bupt.edu.cn gxkang@bupt.edu.cn

This work was supported by Fundamental Research Funds for the Central Universities (2020XD-A06-1), the State Key Program of the National Natural Science Foundation of China (82030037), the National Science and Technology Major Project of China (No.2017ZX03001022).