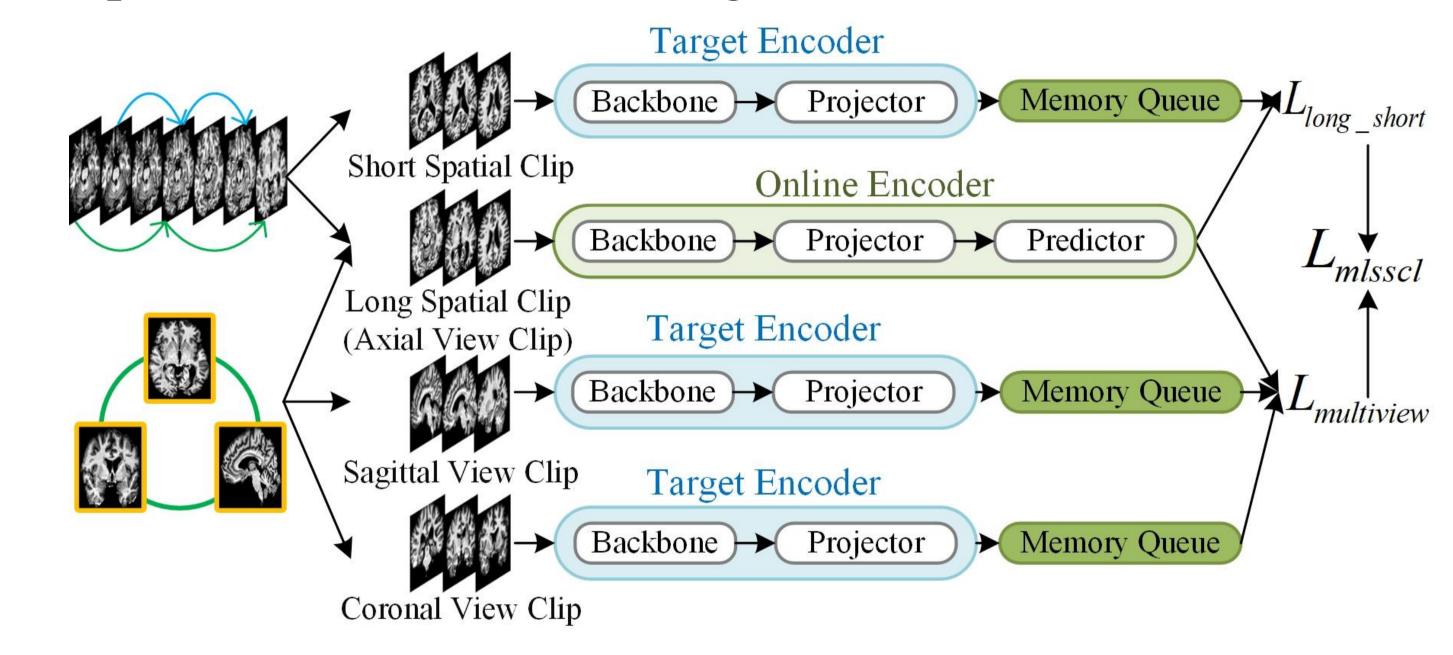


Multiview Long-Short Spatial Contrastive Learning for 3D Medical Image Analysis

Gongpeng Cao¹, Yiping Wang¹, Manli Zhang¹, Jing Zhang¹, Guixia Kang¹, Xin Xu² ¹Beijing University of Posts and Telecommunications, Beijing, China ²Department of Neurosurgery, General Hospital of PLA, Beijing, China

Poster Number: 1483

1. Introduction


Background:

- > Supervised deep learning heavily depends on large labeled datasets whose construction is often challenging in medical image analysis.
- > Contrastive learning, an effective implementation of self-supervised learning (SSL), is a potential solution to alleviate the strong demand for humanannotations.

Motivations:

- Existing contrasting strategies ignore the intrinsic structural similarity and local representation, when applied to 3D medical images.
- > The information shared between three views (axial, coronal and sagittal views) can capture the global representation of volumetric medical image.
- Matching the short spatial clip to long spatial clip forces the model to learn local representation.

• Overall Architecture: Multiview Long-Short Spatial Contrastive Learning Framework.

Long-Short Spatial Contrasting Strategy

> We maximize the representation similarity of long spatial clip v_L and short spatial clip v_{S} to learn local representation:

$$L_{long-short} = L_N(v_S, v_L)$$

3. Experiments

Evaluation on MS Lesion Segmentation

Table 2 The segmentation results of different approaches on

		rable 2. The segmentation results of different approaches on						
the ISBI 2015 longitudinal MS lesion segmentation test set.								
DSC [†]	\mathbf{PPV}^{\dagger}	LTPR [†]	LFPR [†]					
0.6176	0.8229	0.4451	0.3485					
0.6320	0.8103	0.4586	0.3034					
0.6337	0.7991	0.4675	0.3442					
0.6369	0.7972	0.4641	0.3092					
0.6434	0.8200	0.4647	0.3082					
0.6114	0.8992	0.4103	0.1393					
0.6298	0.8446	0.4870	0.2013					
0.6304	0.7866	0.3669	0.1529					
0.6345	0.8682	0.4787	0.1299					
0.6482	0.8007	0.4933	0.2796					
	0.6320 0.6337 0.6369 0.6434 0.6298 0.6304 0.6345	DSC† PPV† 0.6176 0.8229 0.6320 0.8103 0.6337 0.7991 0.6369 0.7972 0.6434 0.8200 0.6298 0.8446 0.6304 0.7866 0.6345 0.8682	DSC† PPV† LTPR† 0.6176 0.8229 0.4451 0.6320 0.8103 0.4586 0.6337 0.7991 0.4675 0.6369 0.7972 0.4641 0.6434 0.8200 0.4647 0.6114 0.8992 0.4103 0.6298 0.8446 0.4870 0.6304 0.7866 0.3669 0.6345 0.8682 0.4787					


Evaluation on AD Classification

Table 1. Results(mean±std) for AD classification (AD vs. HC) on the ADNI-AD classification test set					
Method	ACC	SEN	SPE	AUC	
Training-from-Scratch	0.793 ± 0.011	0.874 ± 0.055	0.711 ± 0.058	0.896 ± 0.006	
BYOL [12]	0.809 ± 0.004	0.866 ± 0.032	0.752 ± 0.037	0.886 ± 0.016	
MoCo [10]	0.825 ± 0.020	0.886 ± 0.043	0.764 ± 0.060	0.895 ± 0.001	
Model Genesis [8]	0.827 ± 0.004	0.911 ± 0.061	0.744 ± 0.061	0.904 ± 0.009	
Age-Aware [13]	0.831 ± 0.007	0.882 ± 0.007	0.780 ± 0.012	0.899 ± 0.011	
MLSSCL	0.858 ± 0.013	$\boldsymbol{0.911 \pm 0.019}$	$\boldsymbol{0.805 \pm 0.044}$	$\boldsymbol{0.907 \pm 0.012}$	

Ablation to Contrasting Strategies

Table 3. Ablation to contrasting strategies on AD classification task (mean \pm std).

Contrasting Strategy	ACC	AUC
Long-Short	0.823 ± 0.012	0.892 ± 0.014
Multiview	0.833 ± 0.027	0.906 ± 0.024
Multiview & Long-Short	0.858 ± 0.013	0.907 ± 0.012

The AD classification performance of networks trained with different amounts of labeled data.

Multiview Contrasting Strategy

2. Method

- To learn global representation, we need to maximize the mutual information between three views (v_a, v_c, v_s) of volumetric image: $\max\{I(v_a; v_c) + I(v_a; v_s) + I(v_c; v_s)\}$
- > However, the mutual information is difficult to compute for high-dimensional data, we use InfoNCE loss L_N to estimate the lower bound of mutual information. For two views $v_1, v_2, :$

$$I(v_1; v_2) \ge log(K) - L_N(v_1, v_2)$$

where *K* is the number of negative samples.

Therefore, we transform the problem of maximizing mutual information between three views into a multiview contrastive learning problem:

$$L_{multiview} = L_N(v_a, v_c) + L_N(v_a, v_s) + L_N(v_c, v_s)$$

4. Conclusion

- ✓ We proposed multiview long-short spatial contrastive learning framework for selfsupervised 3D visual representation learning, involving multiview contrasting strategy and long-short spatial contrasting strategy.
- ✓ Extensive experiments demonstrate that our framework significantly outperforms learning from scratch and other SSL methods.