

MOTIVATIONS/CONTRIBUTIONS

Motivation:

- Providing a novel and innovative architecture (named as TC-HGR which refers to "Temporal Convolutions-based Hand Gesture Recognition architecture") for hand-gesture recognition.
- Data-driven models have been challenged by their need for a large number of trainable parameters and their structural complexity.

Contribution:

- The TC-HGR framework is proposed based on self-attention mechanism and temporal convolution to address the aforementioned challenges with the recurrent architectures.
- The TC-HGR reduces the number of parameters, which is a key step forward to embed the DNN models into prostheses controllers.
- The TC-HGR divides the sEMG signals into patches, which reduces the computational burden of the system.

STRUCTURE OF THE TC-HGR

- After pre-processing, we segment the sEMG signals based on a window of size $W \in$ $\{200 \, ms, 300 \, ms\}$, resulting in the dataset $\mathcal{D} =$ $\{(X_i, y_i)\}_{i=1}^M$. More specifically, $X_i \in \mathbb{R}^{C \times L}$ is the i^{m} segment with label y_i , for $(1 \le i \le M)$.
- Embedded Patches: The input segment X_i is divided into N non-overlapping patches. Here, N = L/P, where P shows the size of each patch. This patching mechanism helps reduce memory and computation requirements.
- Temporal Convolution Block: Inspired by the performance of Temporal Convolutions (TCs) for the sequential data, we used "Temporal Convolution Block" instead of recurrent networks for the sEMG-based HGR.
- Self-Attention Module with Residual Connection: In the proposed TC-HGR architecture, we used the "Temporal Convolution Block" along with the "Attention" mechanism. Attention mechanism allows a model to present important information in a given input sequence.

2022 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'22).

HAND GESTURE RECOGNITION USING TEMPORAL **CONVOLUTIONS AND ATTENTION MECHANISM** Elahe Rahimian[†], Soheil Zabihi[‡], Amir Asif [‡], Dario Farina^{††} S. Farokh Atashzar^{‡‡}, and Arash

Mohammadi[†]

[†]Concordia Institute for Information System Engineering, Montreal, Canada [‡] Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada ^{††}Department of Bioengineering, Imperial College London, London, UK

^{‡‡}Electrical & Computer Engineering. Mechanical & Aerospace Engineering. New York University. USA THE PROPOSED TC-HGR ARCHITECTURE

Figure 1: The proposed TC-HGR architecture: (a) Each input segment X (for simplicity, we dropped the index i) is divided into N non-overlapping patches. Then, each patch is flattened and mapped to model dimension D (blue block). We refer to the output of this process as Embedded Patches. The sequence of the Embedded Patches is passed into the Self-Attention module, which includes the residual connection (purple block). Afterward, we used Z number of Temporal Convolution Blocks to access a long history (orange block). (b) Each Temporal Convolution Block consists of two dilated causal convolutions, each followed by a ReLU activation function. Again, we used residual connections to concatenate the output and input. Finally, a Linear Layer (LL) is adopted to output the class label.

CONCLUSION

- The proposed model showed strong capability in addressing several existing challenges of gesture recognition based on the temporal convolutions and attention mechanism.
- We showed that by proper design of convolution-based architectures, we can extract temporal information of the sEMG signal and improve the performance.
- the proposed architecture can reduce the required number of trainable parameters with respect to the state-of-the-art, which is a key enabling factor to reduce the complexity and embed DNN-based models into prostheses controllers.

REFERENCES

- [1] E. Rahimian, S. Zabihi, F. Atashzar, A. Asif, A. Mohammadi, "XceptionTime: Independent Time-Window XceptionTime Architecture for Hand Gesture Classification," International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1304-1308, 2020.
- [2] E. Rahimian, S. Zabihi, A. Asif, S.F. Atashzar, and A. Mohammadi, "Few-Shot Learning for Decoding Surface Electromyography for Hand Gesture Recognition," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 1300-1304.
- [3] E. Rahimian, S. Zabihi, A. Asif, D. Farina, S.F. Atashzar, and A. Mohammadi, "FS-HGR: Few-shot Learning for Hand Gesture Recognition via ElectroMyography," IEEE Trans. Neural Syst. Rehabil. Eng., 2021.

200 ms

300 ms

dow size W:

	Model ID	1	2	3	4
us III =	Accuracy (%)	79.78	80.22	80.00	80.72
W150	STD (%)	6.5	6.5	6.5	6.4
= ms	Accuracy (%)	80.29	80.63	80.51	80.83
W 200	STD (%)	6.7	6.8	6.7	6.6
_=	Accuracy (%)	80.34	80.99	80.73	81.35
W250	STD (%)	6.4	6.5	6.6	6.6
= ms	Accuracy (%)	80.84	81.59	80.95	81.65
W	STD (%)	6.4	6.5	6.5	6.7

Statistical Comparisons of the Different TC-HGR Variants for Window Size 300 ms::

Comparison with the State-of-the-art Research [10]:

Table 3: Comparison between the proposed TC-HGR methodology and previous works [10], which used recurrent architectures (LSTM).

Reference [10]

Our Method

NYU TANDON SCHOOL OF ENGINEERING

EXPERIMENTAL RESULTS

Experiment 1: Effect of the Model's Dimension *D*::

Table 1: Descriptions of TC-HGR architecture variants.

W	Model ID	Number of Patches N	Model dimension D	Params
	1	10	12	49,186
	2	10	16	68,445
	3	16	12	69,076
	4	16	16	94,965
	1	10	12	52,066
	2	10	16	72,285
	3	15	12	67,651
	4	15	16	92,945

Experiments 2: Effect of the Number of Patches *N* **and Win-**

Table 2: Classification accuracies for TC-HGR architectures variants for different Window Size (W).

	200 ms		300 ms	
	Params	Accuracy (%)	Params	Accuracy (%)
4-layer 3rd Order Dilation	1,102,801	79.0	1,102,801	82.4
4-layer 3rd Order Dilation (pure LSTM)	-	_	466,944	79.7
SVM	-	26.9	-	30.7
Model 1	49,186	80.29	52,066	80.84
Model 4	94,965	80.72	92,945	81.65