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MOTIVATIONS/CONTRIBUTIONS
Motivation:

• Providing a novel and innovative architecture (named as
TC-HGR which refers to “Temporal Convolutions-based
Hand Gesture Recognition architecture”) for hand-gesture
recognition.

• Data-driven models have been challenged by their need for
a large number of trainable parameters and their structural
complexity.

Contribution:

• The TC-HGR framework is proposed based on self-attention
mechanism and temporal convolution to address the afore-
mentioned challenges with the recurrent architectures.

• The TC-HGR reduces the number of parameters, which is a
key step forward to embed the DNN models into prostheses
controllers.

• The TC-HGR divides the sEMG signals into patches, which
reduces the computational burden of the system.

• The TC-HGR can access a long history through temporal
convolutions and also can pinpoint specific information in
the sEMG signals through the attention mechanism.
STRUCTURE OF THE TC-HGR
• After pre-processing, we segment the sEMG

signals based on a window of size W ∈
{200ms, 300ms}, resulting in the dataset D =
{(Xi, yi)}Mi=1. More specifically, Xi ∈ RC×L is
the i

th
segment with label yi, for (1 ≤ i ≤M ).

• Embedded Patches: The input segment Xi is di-
vided into N non-overlapping patches. Here,
N = L/P , where P shows the size of each
patch. This patching mechanism helps reduce
memory and computation requirements.
• Temporal Convolution Block: Inspired by

the performance of Temporal Convolutions
(TCs) for the sequential data, we used
“Temporal Convolution Block” instead of
recurrent networks for the sEMG-based HGR.
• Self-Attention Module with Residual Connec-

tion: In the proposed TC-HGR architecture, we
used the “Temporal Convolution Block” along
with the “Attention” mechanism. Attention
mechanism allows a model to present important
information in a given input sequence.
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THE PROPOSED TC-HGR ARCHITECTURE
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Figure 1: The proposed TC-HGR architecture: (a) Each input segment X (for simplicity, we dropped the index i) is divided
into N non-overlapping patches. Then, each patch is flattened and mapped to model dimension D (blue block). We refer to the
output of this process as Embedded Patches. The sequence of the Embedded Patches is passed into the Self-Attention module,
which includes the residual connection (purple block). Afterward, we used Z number of Temporal Convolution Blocks to access
a long history (orange block). (b) Each Temporal Convolution Block consists of two dilated causal convolutions, each followed by
a ReLU activation function. Again, we used residual connections to concatenate the output and input. Finally, a Linear Layer (LL)
is adopted to output the class label.

EXPERIMENTAL RESULTS
Experiment 1: Effect of the Model’s Dimension D::

Experiments 2: Effect of the Number of Patches N and Win-
dow size W :

Statistical Comparisons of the Different TC-HGR Variants
for Window Size 300 ms::

Comparison with the State-of-the-art Research [10]:

CONCLUSION
• The proposed model showed strong capability in addressing several existing challenges of gesture recognition based on the

temporal convolutions and attention mechanism.
• We showed that by proper design of convolution-based architectures, we can extract temporal information of the sEMG signal

and improve the performance.
• the proposed architecture can reduce the required number of trainable parameters with respect to the state-of-the-art, which is

a key enabling factor to reduce the complexity and embed DNN-based models into prostheses controllers.
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