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Problem Definition and Contribution
● Convolutional neural networks (CNNs) rely on extremely large datasets to 

perform well on new data.
● We examine the potential for Auxiliary-Classifier GANs (AC-GANs) as a 

’one-stop-shop’ architecture for image classification and generation, 
particularly in low data regimes.

● We propose modifications to the typical AC-GAN framework: latent space 
sampling scheme and Wasserstein loss with gradient penalty.
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Figure 1: Simple techniques can improve generated image quality even with limited data. 1 / 12



Generative Adversarial Networks (GANs)1

● Generator (G) tries 
to create samples to 
“fool” the 
discriminator (D).

● Discriminator takes 
turns looking at real 
(x) and fake images 
(G(z)).

Figure 2: GAN Training Scheme. 
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Background: Auxiliary-Classifier GAN (AC-GAN)
● Auxiliary-Classifier GAN (AC-GAN) builds on the Conditional GAN (C-GAN) in 

order to improve image synthesis2,3.

● The discriminator outputs both the source of the inputted image (real or fake) 
and a second label corresponding to the input’s class.

Figure 3: AC-GAN Training Scheme. 
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Methods: Loss Function
● AC-GAN two-part objective:

● Discriminator maximizes LS+ LC.  Generator maximizes Lc- Ls.

● Ls becomes gradient-penalty Wasserstein loss4 to stabilize simultaneous 
image synthesis and classification.
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The Latent Space
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Figure 4: Illustrating the Latent Space.
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Methods: Latent Sampling Scheme
● Truncation trick5: sample latent vector z~pz closer to the mode of the 

distribution, resulting in images with greater realism, but low diversity.
● We propose feeding truncated samples into the classifier.

Figure 5: Sampling the latent vector from a truncated 
distribution results in higher fidelity images, but lower diversity.
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WAC-GAN-GPT
 (Wasserstein AC-GAN with Gradient Penalty and Truncation).

Figure 6: WAC-GAN-GPT Training Scheme
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Results and Discussion
● Ablation studies on 

varying training set sizes 
on Fashion MNIST to 
compare test accuracy.

Figure 7: Graphical representation of Table 1. 

Table 1: Performance on Fashion MNIST test set based on varying training set sizes.

1) Baseline CNN
2) AC-GAN
3) Wasserstein AC-GAN with Gradient 

Penalty (WAC-GAN-GP)
4) AC-GAN with Truncation
5) Our WAC-GAN-GPT
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Results and Discussion
● T-SNE on CNN embeddings for real samples, AC-GAN samples, and WAC-GAN-GPT samples 

based on Fashion MNIST. 

● Average distance to center of class cluster: 7.83, 5.16, and 3.94 for the CNN, AC-GAN, and 
WAC-GAN-GPT, respectively. 

● Standard deviations: 4.71, 2.17, and 1.76.

Figure 8: T-SNE visualizations on Fashion MNIST samples. 

a) CNN b) AC-GAN c) WAC-GAN-GPT
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Results and Discussion
● Are low diversity but more representative images helpful?
● Find optimal truncation factor for each training set size experiment.
● Bilevel optimization: find optimal truncation factor 𝜏 while optimizing GAN:

(4)

(5)

Table 2: Optimal Truncation Factors for various training set sizes. 
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Results and Discussion

● Compare CIFAR10 test accuracy, and then CIFAR10.1v66 to 
compare domain generalizability. 

● COVID-19 Detection on 128x128 chest X-rays.
Table 3: CIFAR test performance and generalizability. 

Table 4: COVID-19 test performance. 

11 / 12



Summary and Conclusion
● AC-GANs can achieve competitive performance with standard CNNs.

○ Particular performance gains in lower data regimes.
● Modifications: Wasserstein-GP + truncation.
● Future work: more diverse datasets, higher resolution images.
● More advanced techniques:  adaptive discriminator augmentation or progressive 

growing.7,8

Figure 9: Naively applying data augmentation transformations leaks through to generated images. 
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