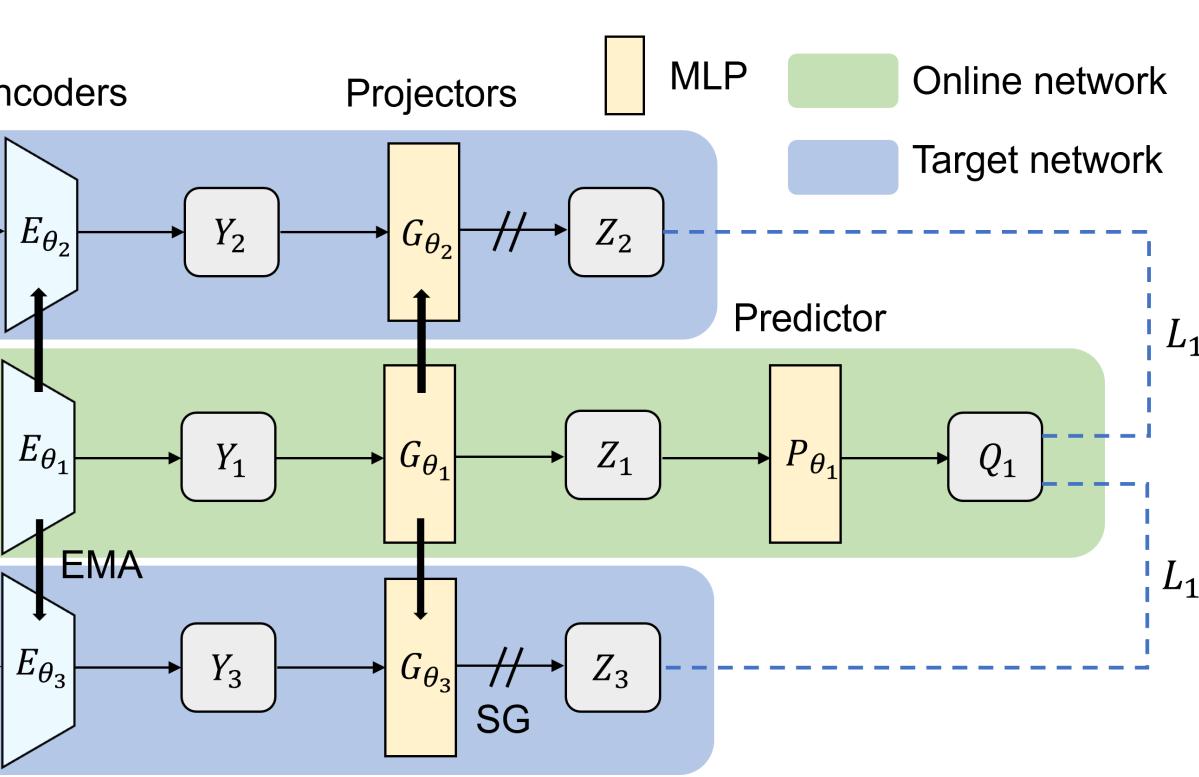

TRIBYOL: TRIPLET BYOL FOR SELF-SUPERVISED REPRESENTATION LEARNING

Guang Li, Ren Togo, Takahiro Ogawa and Miki Haseyama Hokkaido University

INTRODUCTION

PROPOSED METHOD Self-supervised learning based on data augmentation MLP Online network Encoders Projectors Views Self-supervised learning is a means for pre-training Target network networks to learn good representations without human -//-→ *Y*₂ Z_2 MLP providing labeled data. $t_2 \sim T$ Predictor Self-supervised learning based on data augmentation Input CNN CNN CNN CNN is the process of training a classifier to distinguish between "similar" and "dissimilar" input data. E_{θ} Q_1 augmentation SimCLR and BYOL are two state-of-the-art self-EMA $t_3 \sim 1$ supervised learning methods with this scheme. 2 V_3 SG Accuracy degradation in small-batch cases Phenomenon: The accuracy of SimCLR and BYOL > Different from BYOL which uses the Siamese network, we propose the triplet network drastically decreases as the batch size decreases. combined with a triple-view loss for learning better representations with small batch size Reason: When batch size decreases, these methods Novelty: The addition of augmented views can increase mutual information and encour can not learn enough semantic information from a more transformation-invariant representation in small-batch cases. limited views. > We confirm that our method can drastically outperform state-of-the-art self-supervised Problem: Some real-world images, such as medical SimCLR (repro) learning methods on several datasets in small-batch cases. and remote sensing images, are high-resolution and 512 2048 1024 256 128 can only train in small-batch cases. Batch size High-accuracy self-supervised learning in small-batch cases is needed. Our method can learn sufficient semantic information from images in small-batch cases.



Eight benchmark datasets.		.									CIEAD 10			EAD 100			<u> </u>
MNIST		Six state-of-the-art (SOTA) self-supervised learning methods and two supervised learning methods.							Method	1%	CIFAR-10 10%	100%	1%	FAR-100 10%	100%	1%	STL-10 10% 10
FashionMNIST	•	Cross, BYOL, SimSiam, PIRL-Jigsaw, PIRL-Rotation, SimCLR					TriBYOL	56.60	71.73	87.07	9.50	23.57	58.92	56.66	67.72 97		
KMNIST									Cross	50.88	67.34	86.03	6.81	20.96	57.23	42.80	59.22 93
USPS	> Superv	ised trai	nster leal	rning from	mageinet,	Supervise	d learn	ng from scratch	BYOL	56.28		86.87	9.38	22.51		53.96	65.98 97
SVHN									SimSiam			84.76	4.86	14.76		40.38	49.96 88
		_							From Scrate	ch 32.29	57.24	83.87	5.95	17.47	56.70	20.38	39.10 83
CIFAR-10	Linear ev	valuati	on resu	Its with o	ifferent b	atch size	es		ImageNet	69.99	84.27	91.29	27.48	52.41	70.80	81.24	86.34 98
									0								
CIFAR-100									C	I		I					
> CIFAR-100 > STL-10			CIFAR-10		CIFAR-1	00		STL-10		rified that	at our met	hod wa	s effectiv	ve even	usina	few tra	aining data
	Method	b32			CIFAR-1	00 b128	b32	STL-10 b64 b128		ified that	at our met	hod wa	s effectiv	ve even	using	few tra	aining data
STL-10			CIFAR-10		CIFAR-1 2 b64				Ver								
	Method	b32	CIFAR-10 b64	b128 b	CIFAR-1 2 b64 07 59.90	b128 63.05	b32	b64 b128	Ver		at our met ning resu						
STL-10 Settings	Method TriBYOL	b32 79.09	CIFAR-10 b64 85.35	b128 b 87.31 49	CIFAR-1 2 b64 07 59.90 04 54.65	b128 63.05 58.79	b32 75.41	b64b12883.1688.19	Ver	fer lear	ning resı	ults on	differe	nt data	sets (k	b 128)	
STL-10 Settings elf-supervised learning:	Method TriBYOL Cross BYOL SimSiam	b32 79.09 76.01 68.67 58.42	CIFAR-10 b64 85.35 82.06	b128 b 87.31 49 83.50 48	CIFAR-1 2 b64 07 59.90 04 54.65 21 49.68	b128 63.05 58.79	b32 75.41 69.66	b64b12883.1688.1978.3883.79	Ver Trans	fer lear	ning resu FashionMNIST	Ilts on	differe ST USPS	nt data	Sets (k CIFAR-1	b128) 10 CIF	AR-100 STL
STL-10 Settings elf-supervised learning: Encoder: ResNet50	Method TriBYOL Cross BYOL SimSiam PIRL-rotation	b32 79.09 76.01 68.67 58.42	CIFAR-10 b64 85.35 82.06 81.47	b128 b 87.31 49 83.50 48 83.79 41 75.58 1. 55.78	CIFAR-1 2 b64 07 59.90 04 54.65 21 49.68	b128 63.05 58.79 58.34	b32 75.41 69.66 49.60	b64b12883.1688.1978.3883.7980.0984.8865.2071.78-50.26	Ver Trans TriBYOL	fer lear MNIST 98.74	ning resu FashionMNIST 91.76	ults on Г КМNI 92.0	differe ST USPS) 96.61	nt data SVHN 75.23	Sets (k CIFAR-1 80.09	b128) 10 CIF	AR-100 STL 55.88 79.
STL-10 Settings elf-supervised learning: Encoder: ResNet50 MLP hidden size: 512	Method TriBYOL Cross BYOL SimSiam	b32 79.09 76.01 68.67 58.42	CIFAR-10 b64 85.35 82.06 81.47	b128 b 87.31 49 83.50 48 83.79 41 75.58 1. 55.78 49.94	CIFAR-1 2 b64 07 59.90 04 54.65 21 49.68	b128 63.05 58.79 58.34 49.21 31.55 27.36	b32 75.41 69.66 49.60	b64b12883.1688.1978.3883.7980.0984.8865.2071.78-50.26-48.55	Ver Trans TriBYOL Cross	fer lear MNIST 98.74 98.54	ning resu FashionMNIST 91.76 91.28	ults on Г КММІ 92.0 90.3	differe ST USPS 96.61 3 96.21	nt data SVHN 75.23 71.29	Sets (k CIFAR-1 80.09 77.55	b128) 10 CIF	AR-100 STL 55.88 79. 51.53 76.
STL-10 Settings elf-supervised learning: Encoder: ResNet50 MLP hidden size: 512	Method TriBYOL Cross BYOL SimSiam PIRL-rotation	b32 79.09 76.01 68.67 58.42	CIFAR-10 b64 85.35 82.06 81.47	b128 b 87.31 49 83.50 48 83.79 41 75.58 1. 55.78	CIFAR-1 2 b64 07 59.90 04 54.65 21 49.68	b128 63.05 58.79 58.34 49.21 31.55	b32 75.41 69.66 49.60	b64b12883.1688.1978.3883.7980.0984.8865.2071.78-50.26	Ver Trans TriBYOL Cross BYOL	Fer lear MNIST 98.74 98.54 98.41	ning resu FashionMNIST 91.76 91.28 90.77	Its on Г КММІ 92.0 90.3 89.8	differe ST USPS 96.61 3 96.21 3 96.06	nt data SVHN 75.23 71.29 68.75	Sets (k CIFAR-1 80.09 77.55 75.31	b128) 10 CIF 5 4	AR-100 STL 55.88 79. 51.53 76. 48.51 74.
STL-10	Method TriBYOL Cross BYOL SimSiam PIRL-rotation PIRL-jigsaw	b32 79.09 76.01 68.67 58.42	CIFAR-10 b64 85.35 82.06 81.47	b128 b 87.31 49 83.50 48 83.79 41 75.58 1. 55.78 49.94	CIFAR-1 2 b64 07 59.90 04 54.65 21 49.68	b128 63.05 58.79 58.34 49.21 31.55 27.36	b32 75.41 69.66 49.60	b64b12883.1688.1978.3883.7980.0984.8865.2071.78-50.26-48.55	Ver Trans TriBYOL Cross	fer lear MNIST 98.74 98.54	ning resu FashionMNIST 91.76 91.28	ults on Г КММІ 92.0 90.3	differe ST USPS 0 96.61 3 96.21 3 96.06 1 94.02	nt data SVHN 75.23 71.29 68.75 58.70	Sets (k CIFAR-1 80.09 77.55	b128) 10 CIF 5 4 3	AR-100 STL 55.88 79. 51.53 76.

This study was supported in part by AMED Grant Number JP21zf0127004.

This study was conducted on the Data Science Computing System of Education and Research Center for Mathematical and Data Science, Hokkaido University.

Paper ID: 1917

	L: MSE loss of normalized predictions and projections						
	// : stop-gradient						
	Exponential moving average						
1,2	SG: stop gradient						
	EMA: exponential moving average						
1,3	<i>Q</i> : predictions (downscaled image features)						
\prec	P: predictor (multilayer perceptron)						
	<i>Z</i> : projections (downscaled image features)						
	G: projectors (multilayer perceptron)						
es.	Y: extracted image features						
rogo	E: encoders (backbone)						
irage	V: augmented views						
	<i>t</i> : transformations randomly sampled from distribution T						
	X: input chest X-ray image						