

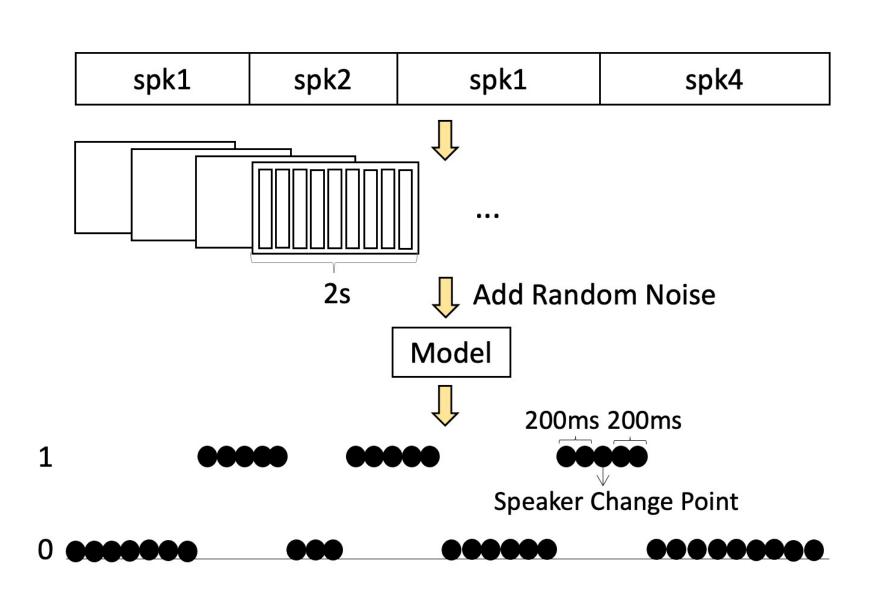
1. Introduction

Task

Determining speaker change time boundaries in recorded speech Motivation

- Speaker Change Detection (SCD) benefits speaker diarization, speaker tracking and transcribing audio with multiple speakers
- Current state-of-the-art SCD system may still improve
- Speaker information in training data and content information in dialog have not been fully utilized

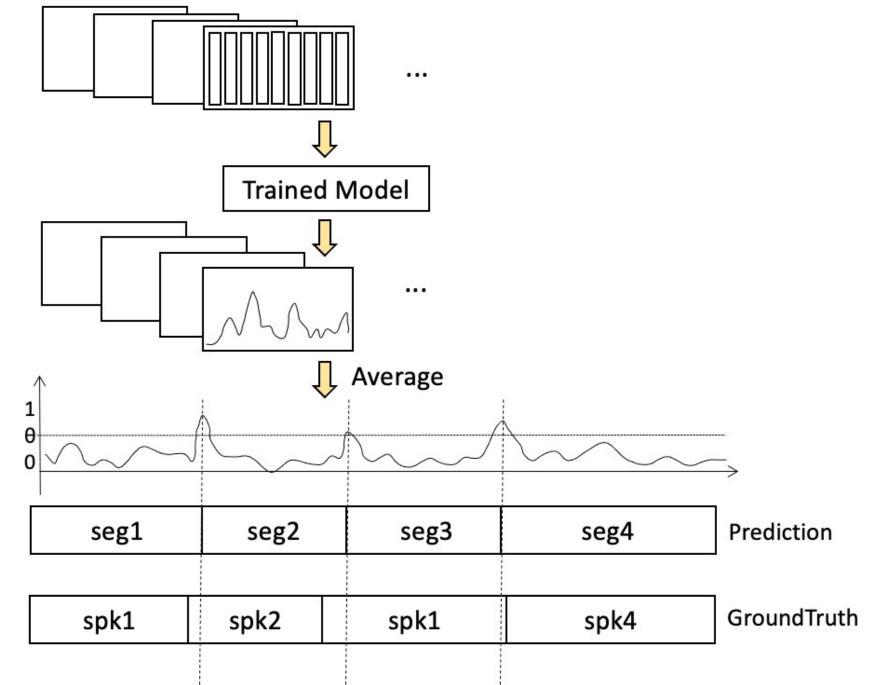
Goal


- Improve the state-of-the-art SCD system in terms of :
- Utilize speaker information in training data
- Add content information extracted from discussion dialog audio

2. Baseline System

Baseline System (see Figure 1): MFCC Recurrent or layers ·IIIIIII III II SinConv Figure 1: Model architecture of the baseline system

Training


- Figure 2 shows training process
- Splitting audio sequence
- Add random noise
- Feed into model
- Predict 1/0 (change/not change)
- Cross Entropy loss

Prediction

- Figure 3 shows the prediction process
 - Splitting audio sequence
 - Feed into the trained model

 - Take the average
 - Decide the boundary

Figure 2: Training process for speaker change detection

A Multitask Learning Framework for Speaker Change Detection with Content Information from Unsupervised Speech Decomposition ¹Hang Su, ¹Danyang Zhao, ¹Long Dang, ²Minglei Li, ¹Xixin Wu, ¹Xunying Liu, ¹Helen Meng

¹The Chinese University of Hong Kong

- Predict 1/0 (change/not change)

Proposed Approach (see Figure 4)

Multitask Learning

- Goal: Utilize speaker information
- Add a "Speaker Branch"
- Predict speaker (Cross Entropy loss)
- Distinguish speakers (Triplet loss)

Unsupervised Speech Decomposition

- Goal: Add content information
- Pretrain a decomposition model
- Decompose spoken information into pitch, rhythm, timbre and content
- Encoder \rightarrow Decoder with MSE loss

Training and Prediction

- Splitting audio sequence

Dataset – AMI corpus

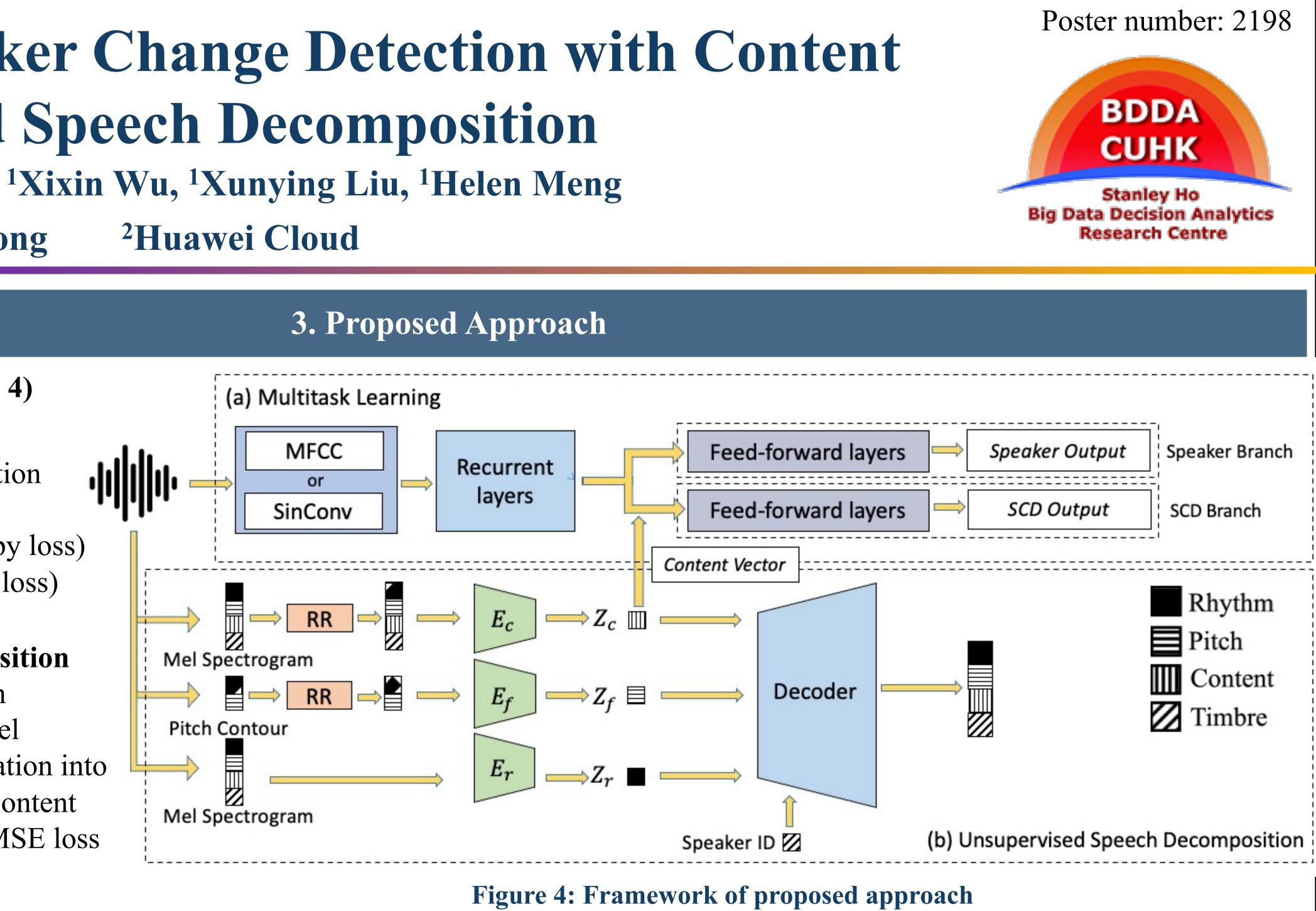
- Collection of conversational recordings in meeting domain
- 4~5 speakers in each conversation

Evaluation Metric

• Coverage : r: reference segment; h: hypothesis segment

coverage(R, H) =

- F1 : harmonic average of coverage and purity


Results

- Table 1 shows the results of using MFCC as the input
- Table 2 shows the results of using waveform as the input

Validation			Test		
Purity	Coverage	F1	Purity	Coverage	F1
85.01	79.90	82.27	86.54	80.72	83.53
85.08	80.78	82.87	87.04	81.18	84.01
85.07	79.98	82.44	86.84	82.97	84.34
85.02	81.14	83.03	86.04	83.31	84.65
85.04	81.68	83.33	86.16	84.56	85.35
	Purity 85.01 85.08 85.07 85.02 	PurityCoverage85.0179.9085.0880.7885.0779.9885.0281.14	PurityCoverageF185.0179.9082.2785.0880.7882.8785.0779.9882.4485.0281.1483.03	PurityCoverageF1Purity85.0179.9082.2786.5485.0880.7882.8787.0485.0779.9882.4486.8485.0281.1483.0386.04	PurityCoverageF1PurityCoverage85.0179.9082.2786.5480.7285.0880.7882.8787.0481.1885.0779.9882.4486.8482.9785.0281.1483.0386.0483.31

Figure 3: Prediction process for speaker change detection

Table 1: Results of using MFCC as the input

Feed into both Multitask Learning model and pre-trained Unsupervised Speech Decomposition (USD) model Obtain content vector from USD model, then feed into Multitask Learning model Predict 1/0 (change/not change) in Multitask Learning model

4. Experiments

70 hours for training, 15 hours for validation, 15 hours for test

$$\frac{\sum_{r \in R} \max_{h \in H} |r \cap h|}{\sum_{r \in R} |r|}$$

• Purity : dual metric of coverage where role of h and r interchanged

Validation			Test			
Purity	Coverage	F1	Purity	Coverage	F1	
85.38	89.49	87.39	85.62	89.71	87.62	
85.00	90.51	87.67	85.16	90.92	87.95	
85.00	91.74	88.24	85.61	91.04	88.24	
85.26	91.49	88.27	85.66	91.02	88.26	
85.00	91.92	88.32	85.68	91.75	88.61	
	Purity 85.38 85.00 85.00 85.26	PurityCoverage85.3889.4985.0090.5185.0091.7485.2691.49	PurityCoverageF185.3889.4987.3985.0090.5187.6785.0091.7488.2485.2691.4988.27	PurityCoverageF1Purity85.3889.4987.3985.6285.0090.5187.6785.1685.0091.7488.2485.6185.2691.4988.2785.66	PurityCoverageF1PurityCoverage85.3889.4987.3985.6289.7185.0090.5187.6785.1690.9285.0091.7488.2485.6191.0485.2691.4988.2785.6691.02	

- the AMI dataset for SCD task

This work is partially supported by the CUHK TDLEG Grant (2016-2019) and a grant from the CUHK Stanley Ho Big Data Decision Analytics Research Centre.

Table 2: Results of using waveform as the input

5. Conclusions

Utilize speaker information with proposed multitask learning architecture to improve performance of SCD Add spoken content vectors extracted from pre-trained

unsupervised speech decomposition model to further improve performance of SCD task

Proposed approach achieved new state-of-the-art result on

6. Acknowledgements