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SIGNAL ENHANCEMENT
Reconstructing a signal from imperfect observa-
tions is an ubiquitous problem in engineering.
Sources of degradation are multiple: background
noise, missing data, non-linear distortion (quan-
tization, clipping), occlusion (image processing),
to mention a few. Diverse tasks of unrelated na-
ture can be framed as signal restoration problems:
biomedical imaging, remote sensing, speech and
video enhancement in streaming platforms, etc.
Furthermore, signal restoration may be a crucial
step in higher level problems—e.g. noise reduc-
tion may facilitate tasks source separation.

EXPERIMENTS
Two experiments are performed: 1. As a proof
of concept, we first investigate the effect of re-
placing global parameters such as noise σ2 with
sequences σ2

1:n. Secondly, we test the sequential
MCMC against the batch scheme in a for differ-
ent excerpts (A: glockenspiel, B: jazz trumpet, C:
vibraphone music, D: oratorio).

MODEL DESCRIPTION

Signal represented as weighted sums of atoms:

x(t) =
M−1∑
m=0

Q−1∑
n=0

cm,q · gm,q(t),

where gm,q(t) corresponds to time- and frequency-
shifted replicas of a window function (e.g., Hann).
As audio signals are normal sparse and highly
structured in the spectral domain, Gabor regres-

sion imposes a spike-slab-prior on coefficients
cm,q : each cm,q has an indicator γm,q that deter-
mines whether it is 0 or non-zero. Morover, a
Markov chain prior is placed along the time axis
n of indicators γ—this imitates the persistence of
tonal components. When cm,q is non-zero, it is
assumed to be drawn from a heavy-tailed dis-
tribution, which reflects the wide range of time-
frequency coefficients in real audio signals.

A state-space model is formulated by dividing the
signal x in N disjoint segments xn and associating
a unique set of coefficients to each xn. Thus xn is
treated as an observation and cn = [cn,ℓ, cn,c, cn,r]
as its underlying state (note that they represent
the left, center and right set of coefficients). To
account for the fact that coefficients “in between”
contribute to two different chunks xn, we impose
the restriction p(cn,ℓ|cn−1,r) = δ(cn,ℓ − cn−1,r).

Global parameters such as noise level σ2 are re-
placed by slowly-varying sequences σ2

1:n.
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CONTRIBUTION
• We formulate a state-space model that pre-

serves the desirable traits of Gabor regres-
sion.

• Unlike original Gabor regression, the pro-
posed model is suitable for sequential in-
ference: A sequential MCMC strategy [1]
is devised to estimate the filtering distribu-
tions p(zt|x1:t) of the synthesis coefficients,
which in turn are used to produce a de-
noised version of the degraded input signal.

• Since sequential MCMC relies on a local
analysis of the signal, the scheme has poten-
tial for real time applications.

ALGORITHM

Since the resulting model has a state-space struc-
ture, it is suitable for sequential inference. Due
to the high dimensionality of the problem and the
poor predictive quality of the prior (without incor-
porating the observations xn, the coefficients have
mean 0), standard Particle filters (e.g. bootstrap)
are not a promising alternative. We instead resort
to the sequential MCMC. Defining our state zn as
a vector containing all the parameters associated
to a frame n (coefficient, indicators, noise level),
we exploit the following factorization:

p(zn−1, zn|x1:n) ∝ p(zn−1|x1:n−1)p(zn|zn−1)p(xn|zn)

to generate samples from p(zn−1, zn|x1:n)
(marginal p(zn|x1:n) is obtained as a by-product).
Given a sample-based approximation of the
previous filtering distribution p̂(zn−1|x1:n−1) =
1
P

∑P
p=1 δ(zn−1 − z

(p)
n−1) and using (i) as the iter-

ation index, sampling is carried out performing
following updates repeatedly (for each frame n):

1. z
(i+1)
n ∼ p(zn|z(i)n−1, x1:n)

2. z
(i+1)
n−1 ∼ p(zn−1|z(i+1)

n , x1:n)

Exploiting the conjugacy of the chosen priors, all
parameters can be sampled from a tractable condi-
tional distribution. To incorporate the information
contained in the following observation xn+1 and
improve the quality of the estimation, at time step
n+1 we refresh previous state zn by splitting it in
two subsets: some components (e.g. the rightmost
coefficients cn,r) are sampled from their analyti-
cal Gibbs updates, whereas the remaining compo-
nents are simply sampled from the discrete collec-
tion of particles of the approximate filtering distri-
bution p̂(zn|x1:n). Note that the resulting scheme
still targets p(zn−1, zn|x1:n).

GENERAL FRAMEWORK
• Bayesian probability can describe genera-

tive models with an almost arbitrary level
of detail, however its computation may be
complicated.

• Gabor regression [2] is a dictionary repre-
sentation endowed with structured sparsity
and heavy-tailed priors on the synthesis co-
efficients, making it particularly suitable for
audio signals.

• These priors reflect domain-specific traits
that simpler optimization-based techniques
ignore (e.g. as time-frequency persistence).
However, inference is expensive and data is
processed in a batch fashion.

RESULTS AND DISCUSSION

Example SNRin SNRout [dB] SNRout [dB]
(label) [dB] (Batch) (Sequential)

A (∼3 s) 10 20.13 19.29
B (∼12 s) 15 21.46 20.03
C (∼8.5 s) 15 25.05 23.18
C (∼8.5 s) 20 28.79 26.96
D (∼8.5 s) 15 21.45 19.84
Audible results in https://rclaveria.github.io/sMCMC_audio

The SNR gap is the combined effect of partial in-
formation (we use filtering distributions rather
than complete trajectories) and a mismodelling
induced by the substitution σ2 by σ2

1:n. This trade-
off is arguably minor, as this modification is what
facilitates sequential processing.
The proposed model (+ Sequential MCMC) needs
fewer iterations to converge. Reconstructions us-
ing the original model (+ batch MCMC) contain
noticeable artifacts when the number of iterations
is limited to 80.
The perceptual gap is less noticeable than the
SNR gap: the two reconstructions are often indis-
tinguishable to the ear.
Scheme has potential for real time applications,
provided that an efficient implementation is
available.
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