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Introduction
A Dysphagia - difficulty in swallowing food
4 Dysphagia can potentially cause aspiration, dehydration & malnutrition
4 Swallowing can be studied non-invasively through Cervical Ausculation (CA)

» CA captures vibrations from the surface of the throat when swallowing food bolus

» ... and gives reliable representations just as golden standards such as VideoFluoroScopy!'!
4 Objective:
» |earn acoustic representations to classify swallows as healthy or dysphagic

Dataset
4 24 subjects: 14 healthy controls, 10 patients
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4 CA device setup: Paediatric-Al Stethoscope connected to microphone (30Hz -
15000Hz) was patched on throat surface posterior to cricoid cartilage, around

the trachea
4 Swallow tasks: Dry, 5ml, 10ml and 15ml of water, 3-4 times per subject

4 172 healthy & 118 dysphagic swallow recordings in total - Dataset InD
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4 Input feature: Mel-Spectrogram (MSpec) for every swallow signal was
computed with 20ms long hamming winsow and 2ms long hop

» Pre-processing - MSpecs (not signals) padded with zeros to equalize time length of all

MSpecs

http://spire.ee.iisc.ac.in/spire/

Classification pipeline

4 1D-CNN (13 layers) SegNet-based/?! feature learner

4 Linear-SVM classifier

4 MSpecs multiplied with binary 1D-mask prior to convolution layers in SegNet

Proposed approaches & Experimental Setup

4 Three investigations
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L Setup:

» 5 groups of 24 subjects with two patients and three controls in every group - 3 groups as
training set, 1 group each for validation and test sets (with no common subjects); 5-fold CV

» SegNet recontruction loss: MSE, validation accuracy based selection of SVM regularization

parameter

» Baseline scheme (BLS) comparison!3l: fourier transform and spectrogram features to train

an RBF-SVM classifier
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SEGNET-BASED DEEP REPRESENTATION
LEARNING FOR DYSPHAGIA CLASSIFICATION
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Results & Discussion

4 Depth analysis: 5 “RCFi-trials” with bottleneck features from each of the 5
progressing maxpooling layers in SegNet encoder

» Learning at different depths identifies time-scale resolution that maximizes performance

» Each maxpooling layer has Receptive Field Size (RCF) of 3, 10, 26, 58, 122 respectively

4 Best: TsT-F in RCF4-trial with a mean (across folds) test F1-score of 80.13%

Mean F1-score (%) Mean Sensitivity (%) Mean Specificity (%) Mean SD (%)
CNNT1 54.21 43.05 62.14 +16.33
Jnt 72.84 72.91 62.92 +10.43
TsT-F 77.96 78.29 66.98 +6.43
TsT-G 52.46 49.28 47.73 +14.97

Baseline F1-score = 71.95%, Sensitivity = 76.67%, Specificity = 42.92%
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A BLS suffered on InD (larger and imbalanced data)

4 Jnt performance only competitive with BLS but still showed low F1-scores

4 TsT-F outperformed all approaches, inc

uding TsT-G, with highest mean

F1-score and lowest mean SD across a

| RCFi-trials

Conclusion

4 Unsupervised feature learning followed by supervised training performed better

than fully supervised training

A Performance variation at different depths hints the influence of swallow phase

transition patterns
A Future directions

» Adapt proposed method to identify severity of dysphagia

» Explore time-scale analysis to outline spectral signatures pertaining to levels of severity
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