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Overview

Deep Speaker Representation Learning (DSRL)
DNN-based technology for learning Speaker Embeddings (SES)
Feature extraction for discriminative tasks (e.g., [Variani+14))
Control of spkr. identity in generative tasks (e.g., [Jia+18])
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This talk: method to learn SEs suitable for generative tasks
Purpose: improving quality & controllability of synthetic speech

Core idea: introducing human listeners for learning SEs that are highly
correlated with perceptual similarity among spkrs.
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Conventional Method:

Speaker-Classification-Based DSRL

Learning to predict speaker ID from input speech parameters
SEs suitable for speaker classification — also suitable for TTS/VC?
One reason: low interpretability of SEs
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Our Method:

Perceptual-Similarity-Aware DSRL

1. Large-scale scoring of perceptual spkr. similarity
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Large Scale Scoring of

Perceptual Speaker Similarity

Crowdsourcing of perceptual speaker similarity scores
Dataset we used: 153 females in JINAS corpus [ltou+99]
4,0001 listeners scored the similarity of two speakers' voices.
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Perceptual Speaker Similarity Matrix

Similarity matrix S = [sy,--, 55, sy
N,: # of pre-stored (i.e., closed) speakers
T ) .. .
s; = [si1 s+ sin,] o the ith similarity score vector

si,;: similarity of the ith & jth speakers (—v <'s;; < v)

(a) Full score matrix (b) Sub-matrix of (a)
(153 females) (13 females)
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I'll present three algorithms to learn the similarity.
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Algorithm 1: Similarity Vector Embedding

Predict a vector of the matrix S from speech parameters
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Algorithm 2: Similarity Matrix Embedding

Associate the Gram matrix of SEs with the matrix S
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Z¢: Normalization coefficient ( S represents off-diagonal matrix of S)



Algorithm 3: Similarity Graph Embedding

Learn the structure of speaker similarity graph from SE pairs
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Human-In-The-Loop Active Learning (AL) for

Perceptual-Similarity-Aware SEs

Overall framework: iterate similarity scoring & SE learning
Obtaining better SEs while reducing costs of scoring & learning
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Human-In-The-Loop Active Learning (AL) for

Perceptual-Similarity-Aware SEs

AL step 1: train spkr. encoder using partially observed scores
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Human-In-The-Loop Active Learning (AL) for

Perceptual-Similarity-Aware SEs

AL step 2: predict similarity scores for unscored spkr. pairs
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Human-In-The-Loop Active Learning (AL) for

Perceptual-Similarity-Aware SEs

AL step 3: select unscored pairs to be scored next

Query strategy: criterion to determine priority of scoring
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Human-In-The-Loop Active Learning (AL) for

Perceptual-Similarity-Aware SEs

AL step 4: annotate similarity scores to selected spkr. pairs

— returnto AL step 1
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Experimental Evaluations



Experimental Conditions

JNAS [Itou+99] 153 female speakers

Dataset 5 utterances per speaker for scoring

(16 kHz sampling) About 130 / 15 utterances for DSRL & evaluation
(FOO1 ~ FO13: unseen speakers for evaluation)

— 3 (dissimilar) ~ +3 (similar)

Similarity score (Normalized to [—1, +1] or [0, 1] in DSRL)

40-dimensional mel-cepstra, FO, aperiodicity

Speech parameters (extracted by STRAIGHT analysis [Kawahara+99]

DNNSs Fully-connected (for details, please see our paper)

Dim. of SEs 8

Pool-based simulation

AL setting (Using binary masking for excluding unobserved scores)

Conventional: d-vectors [Variani+14]
Ours: Prop. (vec), Prop. (mat), or Prop. (graph)

DSRL methods




Evaluation 1: SE Interpretability

Scatter plots of human-/SE-derived similarity scores
Prop. (*) highly correlated with the human-derived sim. scores.
— Our DSRL can learn interpretable SEs better than d-vec!
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Evaluation 2: Speaker Interpolation Controllability

Task: generate new speaker identity by mixing two SEs

We evaluated spkr. sim. between interpolated speech with
a € {0.0,0.25,0.5,0.75, 1.0} and original speaker's (¢ = 0 or 1).

The score curves of Prop. (*) were closer to the red line.

— Our SEs achieve higher controllability than d-vec.!
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Evaluation 3: AL Cost Efficacy

AL setting: starting DSRL from PS to reach FS situation
MSF was the best query strategy for all proposed methods.
Prop. (vec / graph) reduced the cost, but Prop. (mat) didn't work
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In each AL iteration, sim. scores of 43 speaker-pairs were newly annotated.



Purpose
Learning SEs highly correlated with perceptual speaker similarity

Proposed methods
1) Perceptual-similarity-aware learning of SEs
2) Human-in-the-loop AL for DSRL

Results of our methods
1) learned SEs having high correlation with human perception
2) achieved better controllability in speaker interpolation
3) reduced costs of scoring/training by introducing AL

For detailed discussion... Ol

Please read our TASLP paper (open access)! IEI '

Thank you for your attention!


https://ieeexplore.ieee.org/document/9354556

