ICASSP2022 @ Singapore [SPE-L3.9] Perceptual-Similarity-Aware Deep Speaker Representation Learning for Multi-Speaker Generative Modeling

Yuki

Saito

Hiroshi Saruwatari

The University of Tokyo, Japan.

Saruwatari & Koyama lab. (System #1)

©Yuki Saito, May 25, 2022.

Overview

Deep Speaker Representation Learning (DSRL)

DNN-based technology for learning Speaker Embeddings (SEs) Feature extraction for *discriminative* tasks (e.g., [Variani+14]) Control of spkr. identity in *generative* tasks (e.g., [Jia+18])

This talk: method to learn SEs suitable for generative tasks

Purpose: improving quality & controllability of synthetic speech Core idea: introducing human listeners for learning SEs that are highly correlated with **perceptual similarity among spkrs.**

Conventional Method: Speaker-Classification-Based DSRL

Learning to predict speaker ID from input speech parameters

SEs suitable for speaker classification \rightarrow also suitable for TTS/VC? One reason: low interpretability of SEs

Our Method: Perceptual-Similarity-Aware DSRL

1. Large-scale scoring of perceptual spkr. similarity

2. SE learning considering the similarity scores

Large Scale Scoring of Perceptual Speaker Similarity

Crowdsourcing of perceptual speaker similarity scores

Dataset we used: 153 females in JNAS corpus [Itou+99]

4,000↑ listeners scored the similarity of two speakers' voices. Instruction of the scoring

To what degree do these two speakers' voices sound similar? (−3: dissimilar ~ +3: similar)

Histogram of the collected scores

Perceptual Speaker Similarity Matrix

I'll present three algorithms to learn the similarity.

Algorithm 1: Similarity Vector Embedding

Predict a vector of the matrix S from speech parameters

$$L_{\text{SIM}}^{(\text{vec})}(\boldsymbol{s}, \boldsymbol{\hat{s}}) = \frac{1}{N_s} (\boldsymbol{\hat{s}} - \boldsymbol{s})^{\top} (\boldsymbol{\hat{s}} - \boldsymbol{s})$$

Algorithm 2: Similarity Matrix Embedding

Associate the Gram matrix of SEs with the matrix S

$$L_{\text{SIM}}^{(\text{mat})}(\mathbf{D}, \mathbf{S}) = \frac{1}{Z_{\text{S}}} \left\| \widetilde{\mathbf{K}}_{\mathbf{D}} - \widetilde{\mathbf{S}} \right\|_{F}^{2}$$

Algorithm 3: Similarity Graph Embedding

Learn the structure of speaker similarity graph from SE pairs

$$L_{\text{SIM}}^{(\text{graph})}(\boldsymbol{d}_{i}, \boldsymbol{d}_{j}) = -a_{i,j} \log p_{i,j} - (1 - a_{i,j}) \log(1 - p_{i,j})$$

 $p_{i,j} = \exp\left(-\left\|\boldsymbol{d}_{i} - \boldsymbol{d}_{j}\right\|_{2}^{2}\right)$: edge probability (referring to [Li+18])

Overall framework: iterate similarity scoring & SE learning

Obtaining better SEs while reducing costs of scoring & learning

AL step 1: train spkr. encoder using partially observed scores

AL step 2: predict similarity scores for unscored spkr. pairs

AL step 3: select unscored pairs to be scored next

Query strategy: criterion to determine priority of scoring

AL step 4: annotate similarity scores to selected spkr. pairs

13/19

Experimental Evaluations

Experimental Conditions

Dataset (16 kHz sampling)	JNAS [Itou+99] 153 female speakers 5 utterances per speaker for scoring About 130 / 15 utterances for DSRL & evaluation (F001 ~ F013: unseen speakers for evaluation)
Similarity score	-3 (dissimilar) ~ +3 (similar) (Normalized to [-1, +1] or [0, 1] in DSRL)
Speech parameters	40-dimensional mel-cepstra, F0, aperiodicity (extracted by STRAIGHT analysis [Kawahara+99]
DNNs	Fully-connected (for details, please see our paper)
Dim. of SEs	8
AL setting	Pool-based simulation (Using binary masking for excluding unobserved scores)
DSRL methods	Conventional: d-vectors [Variani+14] Ours: Prop. (vec), Prop. (mat), or Prop. (graph)

Evaluation 1: SE Interpretability

Scatter plots of human-/SE-derived similarity scores

Prop. (*) highly correlated with the human-derived sim. scores.

 \rightarrow Our DSRL can learn interpretable SEs better than d-vec!

Evaluation 2: Speaker Interpolation Controllability

Task: generate new speaker identity by mixing two SEs

We evaluated spkr. sim. between interpolated speech with $\alpha \in \{0.0, 0.25, 0.5, 0.75, 1.0\}$ and original speaker's ($\alpha = 0$ or 1). The score curves of Prop. (*) were closer to the red line.

(20 answers/listener, total 30×2 listeners, method-wise preference XAB test)

Evaluation 3: AL Cost Efficacy

AL setting: starting DSRL from PS to reach FS situation MSF was the best query strategy for all proposed methods. Prop. (vec / graph) reduced the cost, but Prop. (mat) didn't work

In each AL iteration, sim. scores of 43 speaker-pairs were newly annotated.

Summary

Purpose

Learning SEs highly correlated with perceptual speaker similarity

Proposed methods

- 1) Perceptual-similarity-aware learning of SEs
- 2) Human-in-the-loop AL for DSRL

Results of our methods

- 1) learned SEs having high correlation with human perception
- 2) achieved better controllability in speaker interpolation
- 3) reduced costs of scoring/training by introducing AL

For detailed discussion...

Please read our TASLP paper (open access)!

Thank you for your attention!