IMPQ: Reduced Complexity Neural Networks via Granular Precision Assignment

Sujan Kumar Gonugondla* Naresh Shanbhag

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana, IL-61801 gonugon2@illinois.edu

*Now with Amazon Web Services

Machine Learning Under Resource Constraints

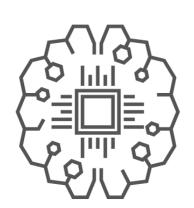
smart devices

wearables

self-driving cars

AR/VR

autonomous systems



smart homes

decision making under *resource constraints* limited energy supply, storage, real-time response

Machine learning at the edge opens up many interesting applications

S.K. Gonugondla and N.R. Shanbhag

Approach to improve inference efficiency

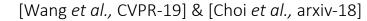
Novel hardware accelerators

- specialized neural-network accelerators, and drivers
- in-memory computing

Novel algorithmic approaches

- Efficient neural network architectures
 - Ex: using depth-wise separable layers, low-rank approximations
- Knowledge distillation
- Pruning
- Low-precision quantization

Precision/SNR Requirements in Neural Nets



ECE ILLINOIS



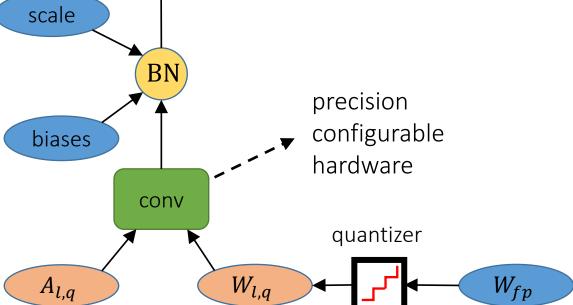
- precision/SNR requirements \rightarrow changes across layers, datasets and networks
- compact networks more sensitive to quantization

Can we reduce these requirements?

Motivation quantizer ReLU ReLU $A_{l+1,q}$ scale BN precision

Key insights

- specialized training techniques → aggressively low precision
- granular precision assignments → energy-accuracy trade-off opportunity

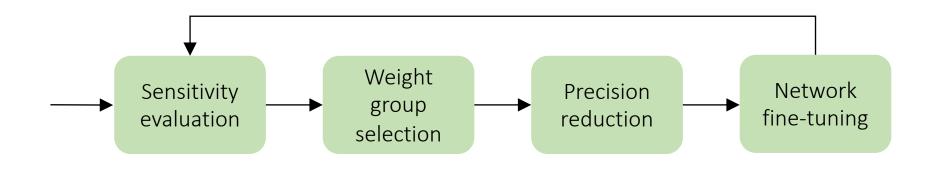


ECE ILLINOIS

Challenge

• granular precision assignments \rightarrow exponentially huge search space

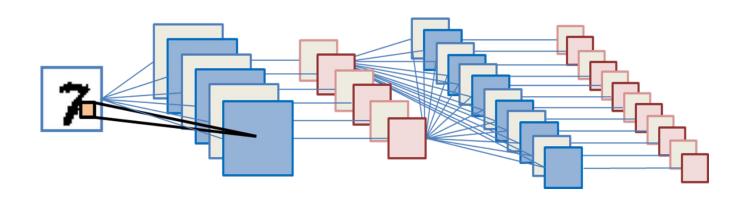
Proposed Scheme

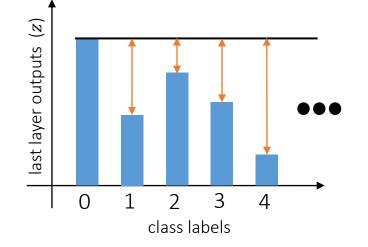


- starting with a pre-trained network ensures a good starting reference
- weight/activation groups that will have the same precision (layer-wise, kernel-wise)
- sensitivity-based precision allocation and retraining
 - protects important weights & compensates for accuracy loss

How do we obtain a sensitivity metric?

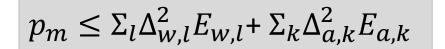
Sensitivity Metric

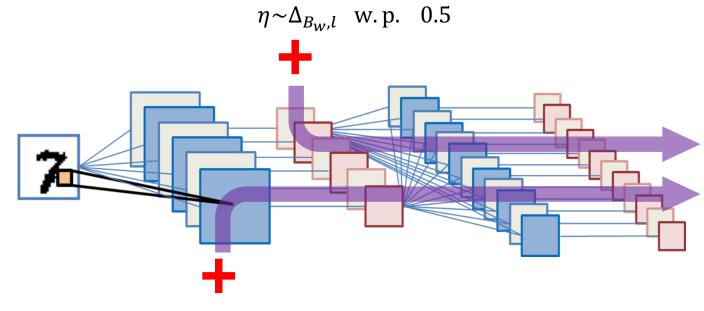




[Sakr et al., ICML-17]

Sensitivity Metric





$$\eta \sim \Delta_{B_A,k}$$
 w.p. 0.5

⁸ S.K. Gonugondla and N.R. Shanbhag

$$E_{W,l} = \mathbb{E}\left[\sum_{\substack{i=1\\i\neq\hat{y}_t}}^{M} \frac{\sum_{h\in\mathcal{W}_l} \left|\frac{\partial \left(Z_i - Z_{y_c}\right)}{\partial h}\right|^2}{12\left|Z_i - Z_{y_c}\right|^2}\right] \qquad E_{A,k} = \mathbb{E}\left[\sum_{i\neq y_c} \frac{\sum_{h\in A_k} \left|\frac{\partial \left(Z_i - Z_{y_c}\right)}{\partial h}\right|^2}{12\left|Z_i - Z_{y_c}\right|^2}\right]$$

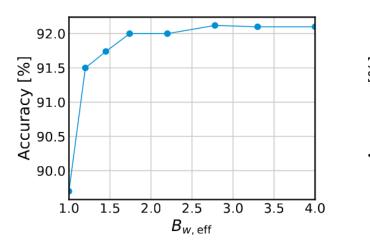
[Sakr et al., ICML-17]

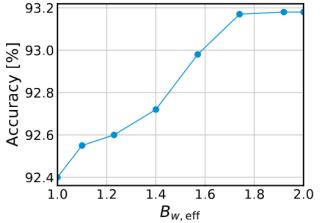
$$\Delta_{B_{W},l} = 2^{-B_{W,l}}$$
$$\Delta_{B_{A},k} = 2^{-B_{A,k}}$$

l/k : weight/activation group index

 $B_{w,l}$: weight precision of the l-th group $B_{A,k}$: activation precision of the k-th group

Experiments on CIFAR-10





Dataset : CIFAR 10 Network : ResNet-20							
Method	$B_{w,\mathrm{eff}}$	FP^{\dagger} Acc.	Acc. [%]	Change			
BWN [26]	1	92.10	90.2	1.90			
TWN [6]	Ternary	91.77	90.78	0.89			
TTQ [7]	Ternary	91.77	91.13	0.64			
ELQ [27]	Ternary	91.25	91.45	-0.20			
ELQ [27]	1	91.25	91.15	0.10			
DoReFa 9]	3	92.10	91.81	0.29			
DoReFa 9]	2	92.10	91.41	0.69			
LQ-Net* [25]	3	92.00	92.00	0			
LQ-Net* [25]	2	92.00	91.80	0.20			
IMPQ	1.74	92.10	92.00	0.10			

Natural + DecNat 20

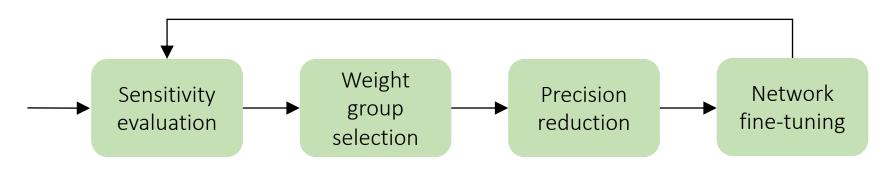
ECE ILLINOIS

Detect CIEAD 10

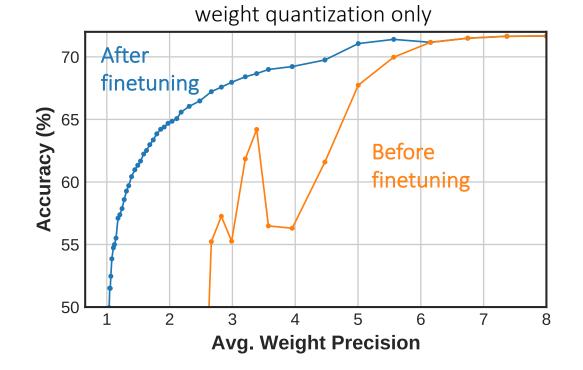
- VGG is less sensitive to quantization than ResNet
- IMPQ achieves high compression with minimal accuracy loss

Dataset : CIFAR 10 Network : VGG-Small						
Method	$B_{w,\mathrm{eff}}$	FP [†] Acc.	Acc. [%]	Change		
BWN [26]	1	93.18	91.77	1.45		
TWN [<mark>6</mark>]	Ternary	93.18	92.56	0.62		
LQ-Net* [23]	2	93.8	93.8	0		
IMPQ	1.55	93.1	92.97	0.13		

Experiments on ImageNet



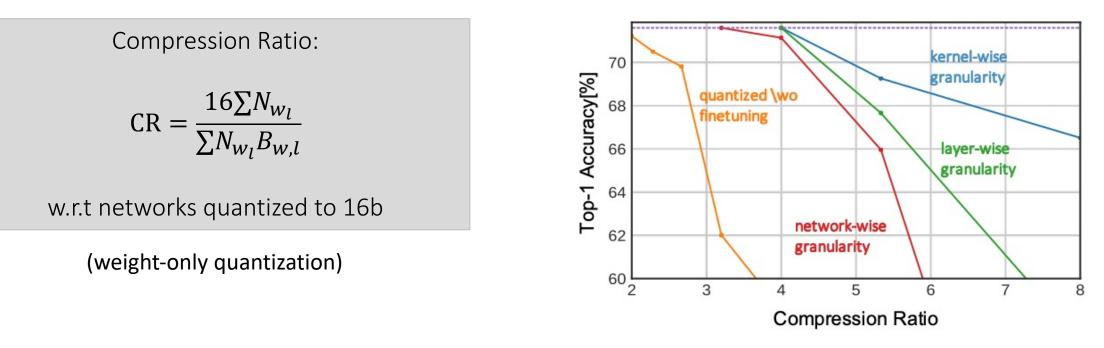
- ImageNet on MobileNetV1
- 3 epochs of fine-tuning
- kernel-wise granularity
- number of weight groups picked reduced every 8 iterations



ECE ILLINOIS

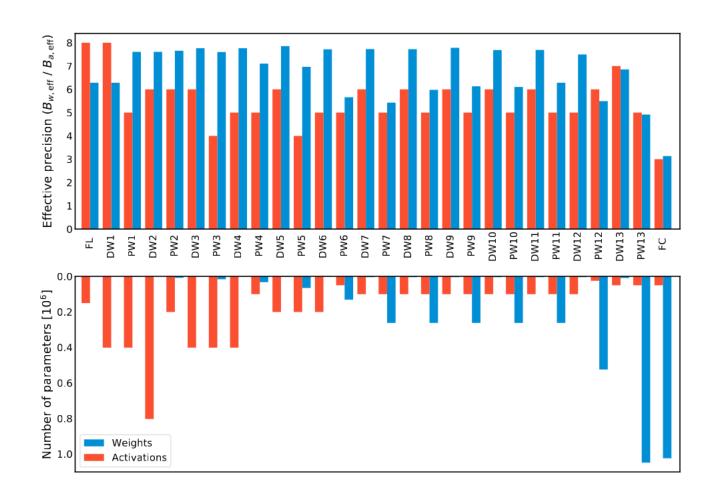
Insights : Impact of Kernel-Wise Granularity

ImageNet on MobileNetV1



- quantizing a pre-trained network does not lead to large compression
- compression improves with granular precision assignment

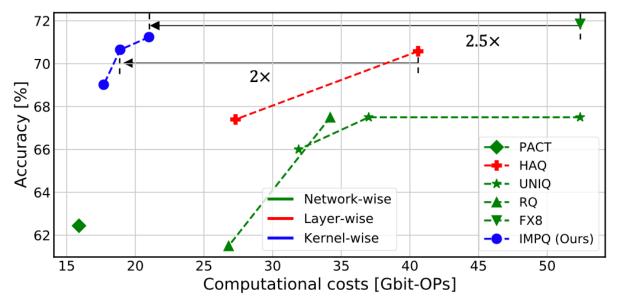
Insights: Sensitivity Across Layers



ImageNet on MobileNetV1

- precision requirements reduce with depth
- layers with more parameters are less sensitive to noise
- precision reduced in layers with most parameters

Comparison With Other Works



- IMPQ reduces costs by $2 \times -2.5 \times$ on MobileNetV1
- 1.7× better compression

Method	$B_{w,\mathrm{eff}}$	$B_{a, eff}$	Top-1 Acc. [%]	\mathcal{C}_C [Gbit-OPs]
PACT [10, 17]	6	6	71.22	34.2
PACT [110, 117]	5	5	67.00	26.8
PACT [119, 117]	4	4	62.44	15.9
HAQ [17]	6	6	70.90	-
HAQ [17]	5	5	70.58	-
HAQ [17]	4	4	67.40	-
UNIQ [<mark>18</mark>]	8	8	67.50	52.4
UNIQ [<mark>18</mark>]	5	8	67.50	37.0
UNIQ [<mark>18</mark>]	4	8	66.00	31.9
RQ [19]	6	6	67.50	34.2
RQ [19]	5	5	61.50	26.8
DBQ* [<mark>8</mark>]	3	8	70.92	21.8
FP Baseline	32	32	71.84	-
FX8 Baseline	8	8	71.86	52.4
IMPQ	6	6	71.24	21.0
IMPQ	5	5	70.65	18.9
IMPQ	4	5.8	69.02	17.7

* nonlinear quantization

Conclusions

- Granular precision assignment leads to lower precision but is challenging to implement
- Proposed method uses sensitivity-based precision reduction
- 42% better compression compared to s.o.t.a on CIFAR-10
- 33% better compression on MobileNet-V1
- <1.5% drop in accuracy for $B_{a,eff} = B_{w,eff} = 5$ on MobileNet-V1

