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ABSTRACT

Mutual learning, the related idea to knowledge distilla-
tion, is a group of untrained lightweight networks, which
simultaneously learn and share knowledge to perform tasks
together during training. In this paper, we propose a novel
mutual learning approach, namely selective mutual learn-
ing. This is the simple yet effective approach to boost the
performance of the networks for speech separation. There
are two networks in the selective mutual learning method,
they are like a pair of friends learning and sharing knowledge
with each other. Especially, the high-confidence predictions
are used to guide the remaining network while the low-
confidence predictions are ignored. This helps to remove
poor predictions of the two networks during sharing knowl-
edge. The experimental results have shown that our proposed
selective mutual learning method significantly improves the
separation performance compared to existing training strate-
gies including independently training, knowledge distillation,
and mutual learning with the same network architecture.

Index Terms— Supervised speech separation, mono-
phonic source separation, time domain audio separation.

1. INTRODUCTION

In recent years, deep learning-based speech separation has
achieved impressive performance. The speech separation
methods include two main categories such as time-frequency
(TF) domain-based methods and time-domain-based meth-
ods. In the TF domain, the speech separation methods aim to
approximate the estimated spectrum with the clean spectrum
of the speakers [1, 2]. Moreover, several methods use the TF
mask as a training target, so they have achieved significant
performance by improving the accuracy for the estimated
mask [3, 4, 5, 6, 7]. The short-time Fourier transform (STFT)
is an important technique adopted to create a TF representa-
tion of the mixed signal. These TF representations are sep-
arated into individual sources which are used to reconstruct
the source waveform by the inverse STFT (iSTFT). There are
several limitations that arise in the TF domain-based meth-
ods. For example, the TF representation in a complex domain
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contains both the magnitude and phase of the signal, how-
ever, addressing the phase problem is very difficult, so most
of the proposed methods only solve the magnitude of the
mixture and have an upper bound on separation performance.
Although several approaches use the phase information to
design the reference masks, e.g., the phase-sensitive mask [8]
and complex ratio mask [9], the separation performance still
exists in the upper bound. Moreover, source separation in the
TF domain for effective performance requires high-frequency
resolution e.g., the window length of 32 ms for speech sepa-
ration [3, 4] and 90 ms for music separation [10]. Therefore,
these approaches are limited in applications for very short
latency systems or real-time systems.

The recent time-domain models overcome the TF do-
main’s limitations, the time-domain-based methods directly
separate the mixed waveform, and have achieved significant
progress, e.g., the time-domain audio separation networks
(TasNet) [11], fully-convolutional time-domain audio separa-
tion network (Conv-TasNet) [12], and the time convolutional
networks (TCNs) [13, 14, 15]. Very recently, the dual-path
recurrent neural network (DPRNN) [16] is proven to be
promising for speech separation, which is capable of mod-
eling extremely long-time sequences with state-of-the-art
performance. The DPRNN first divides the long input se-
quence into shorter segments and length-fixed segments and
then it performs local and global processing using an intra-
segment RNN and an inter-segment RNN iteratively on seg-
ments. The interleaving architecture allows the inter-segment
RNN to process information across segments and the intra-
segment RNN processes the local segments independently.
Therefore, the DPRNN architecture is a promising choice
for long sequences. The intra-segment and inter-segment in
DPRNN’s architecture are the powerful techniques that have
been used in recent advanced models such as DPTNet [17]
and SepFormer [18]. Besides, various lightweight methods
based on DPRNN have been proposed such as GroupComm-
DPRNN [19], GC3-DPRNN [20], Sandglasset [21], etc.

To boost the performance for lightweight models, knowl-
edge distillation (KD) [22] is one of the common approaches
because of its ability to transfer a big pre-trained network’s
interpretation capability to other smaller networks without re-
ducing the performance capability of these small networks
(see Fig. 1 (a)). However, this approach requires a teacher
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Fig. 1. Comparison between ML and KD for speech
separation. The black line is the forward path; the black
dashed line indicates the feature distillation from the pre-
trained teacher to the student meanwhile the blue dashed line
illustrates the knowledge sharing between two networks in the
ML approach.

network to guide the student network. Moreover, the distilla-
tion process usually is performed one way, i.e., from teacher
to student. In contrast, mutual learning (ML) approaches use
a group of students to learn and share knowledge simultane-
ously with each other during the training phase (see Fig. 1
(b)). ML has become a promising approach to increase per-
formance on many different tasks such as image classifica-
tion [23], audio tagging [24], speech recognition [25], etc.

In this paper, we propose a simple yet robust approach to
boost the performance of the deep models for speech sepa-
ration, namely the selective mutual learning (SML) method.
Inspired by conventional ML, there are two networks in our
method, and these networks are trained simultaneously to
solve the task together. Moreover, they are to be like a couple
of friends, learning and sharing knowledge with each other.
Different from existing ML methods, which always teach
each other throughout the training process, in our approach,
only high-confidence predictions are used to guide the re-
maining network while the low-confidence predictions are
ignored. Specifically, the predictions with high values of the
scale-invariant source-to-noise ratio (SI-SNR) of network 1
are used to guide the training of network 2 and otherwise at
each epoch. This helps our model avoids using poor predic-
tions to train and promotes networks towards highly accurate
predictions. Our contribution is summarized as follows:

(1) We present a new approach based on ML for speech
separation. To our best knowledge, this is the first ML
method that is built for speech separation.

(2) We propose a novel SML strategy. It allows remov-
ing poor predictions between two networks during the
sharing knowledge process.

(3) Experimental results show that our SML approach out-
performs other training mechanisms such as indepen-
dently training, KD, and ML with the same network
architecture. The details are discussed in Section 3.

2. METHODOLOGY

2.1. Problem Setup

Given a mixed speech signal x from the independent speech
signals, the goal of the speech separation task is to separate
the component speech signals from x. In this paper, we focus
on x as the mixed signal from two single signals (assume g
and h). Our goal is how to extract g and h separately from x.
Let X = {x(1), x(2), ..., x(N)} denote the set of the mixed
speeches, S = {s(1), s(2), ..., s(N)} is the set of reference
clean sources and Ŝ = {ŝ(1), ŝ(2), ..., ŝ(N)} is the set of esti-
mated sources where s(i) = [g(i), h(i)] and ŝ(i) = [ĝ(i), ĥ(i)].
N illustrates the numbers of training samples. In time-domain
speech separation frameworks, SI-SNR [26] usually is used as
the training target (as a loss function) to compare the similar-
ity between two signals (e.g., a reference clean source s and
an estimated source ŝ). The SI-SNR is defined as follows:

P (s, ŝ) = 10log10
||α · s||2

||ŝ− α · s||2
(1)

where α = 〈ŝ,s〉s
||s||2 . The s ∈ R1×t and ŝ ∈ R1×t where t

denotes the length of the signals. Scale invariance is ensured
when s and ŝ are normalized to zero-mean. In the training
process, we utilize the utterance-level permutation invariant
training (uPIT) [4] to address the source permutation issue.

Network 1 Estimated Sources 
of Network 1

Mixture
Signal

Network 2 Estimated Sources 
of Network 2

Reference
Sources

Fig. 2. Overview of our proposed SML approach for
speech separation. In which, the black dashed line indicates
the supervised learning loss and the blue dashed line illus-
trates the knowledge sharing between two networks in the
SML framework. The hyper-parameter c denotes the confi-
dence factor.

2.2. Selective Mutual Learning

As shown in Fig. 2, there are two networks in the SML frame-
work, namely network 1 and network 2. Let denoteF1 andF2

correspond to the network 1 and network 2, respectively. Let
their corresponding parameters be θ1 and θ2. We denote ŝ(i)1

and ŝ(i)2 as the estimated output sources of theF1 andF2 with
the input x(i) i.e., ŝ(i)1 = F1(x

(i); θ1) and ŝ(i)2 = F2(x
(i); θ2).

There are two main loss terms in the loss function of the SML
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framework, including the loss function for F1 and the other
for F2. In particular, the loss of each network is calculated as:

L1 =
1

N

N∑
i=1

(
Lsup(s

(i), ŝ
(i)
1 )+λLsml(s

(i), ŝ
(i)
2 , ŝ

(i)
1 )
)

(2)

L2 =
1

N

N∑
i=1

(
Lsup(s

(i), ŝ
(i)
2 )+λLsml(s

(i), ŝ
(i)
1 , ŝ

(i)
2 )
)

(3)

where L1 and L2 correspond to the overall loss functions of
F1 and F2. The hyper-parameter λ is a hyper-parameter rep-
resenting the weight of Lsml and Lsup denotes the supervised
loss between the reference clean source and the estimated
source. Lsup is calculated by:

Lsup(s
(i), ŝ

(i)
1 ) = −P (s(i), ŝ(i)1 ) (4)

Lsup(s
(i), ŝ

(i)
2 ) = −P (s(i), ŝ(i)2 ) (5)

Besides, Lsml is the SML loss function between two net-
works. Specifically, we use the estimated source of network
1 as a reference pseudo-source to guide the training of net-
work 2 and likewise for the training of network 1. Moreover,
we only retain the high-quality estimated sources and ignore
the low-quality estimated sources during the mutual learning
phase. To evaluate the quality of the estimated sources, we
use a hyper-parameter c, called the confidence factor. The
detail of the Lsml loss is illustrated as follows:

Lsml(s
(i), ŝ

(i)
2 , ŝ

(i)
1 ; c) = −1

(
P (s(i), ŝ

(i)
2 ) ≥ c

)
P (ŝ2, ŝ1)

(6)

Lsml(s
(i), ŝ

(i)
1 , ŝ

(i)
2 ; c) = −1

(
P (s(i), ŝ

(i)
1 ) ≥ c

)
P (ŝ1, ŝ2)

(7)
In Eq. 6, −1 is an indicator function that evaluates to -1

if P (s(i), ŝ(i)2 ) ≥ c, i.e, only estimated sources ŝ(i)2 , which
are compared to the reference clean sources s(i) and greater
than the confidence factor c, will be utilized as the reference
pseudo-sources. The low-quality estimated sources (i.e., −1
is 0 if P (s(i), ŝ(i)2 ) < c) are removed. Likewise with Eq. 7.
The detailed procedure of the SML framework in the training
process is illustrated in Algorithm 1.

3. EXPERIMENTS

3.1. Dataset and Evaluation Metrics

Dataset. We evaluated the SML approach on the speaker-
independent speech separation task using the WSJ0-2mix
dataset. This is the common two-speaker benchmark used for
speech separation in recent years. The WSJ0-2mix dataset in-
cludes a 30-hour training dataset, a 10-hour validation dataset,

Algorithm 1: SML for speech separation

Input: Training mixed set X , the reference set S.
F1,F2: The network 1 and network 2.
λ, c: Loss weight and confidence factors.

Initialize: θ1 and θ2 for F1 and F2, respectively.
1 repeat
2 x, s = get batch(X,S)
3 ŝ1 = F1(x; θ1)
4 ŝ2 = F2(x; θ2)
5 Calculate L1 = Lsup(s, ŝ1)+λLsml(s, ŝ2, ŝ1; c)
6 Calculate L2 = Lsup(s, ŝ2)+λLsml(s, ŝ1, ŝ2; c)
7 Update parameters θ1 and θ2
8 until convergence
9 return (F1, θ1) and (F2, θ2)

and a 5-hour evaluation dataset. The signal mixtures between
-5 and 5 dB signal-to-noise ratio (SNR) are artificially gen-
erated by selecting random female and male speakers in the
WSJ0 dataset. The training and validation datasets have been
generated from speakers in si_tr_s from the WSJ0 dataset
while the evaluation dataset is generated using by utterances
with 16 speakers in the si_dt_05 and si_et_05 from
the WSJ0 dataset, respectively. All the mixed waveforms
are sampled down from 16 kHz to 8kHz for reducing the
computational consumption.
Metrics. The separation performance of the proposed method
is evaluated with scale-invariant signal-to-noise ratio im-
provement (SI-SNRi) [26], source-to-distortion ratio im-
provement (SDRi), short-time objective intelligibility (STOI),
and perceptual evaluation of speech quality (PESQ). The SI-
SNRi and SDRi metrics used in [27, 4, 11]. STOI [28] varies
from 0 to 1, and reflects a correlation of voice intelligibility in
hearing tests. PESQ [29] values range from −0.5 to 4.5, and
are widely used to evaluate separation performance. All the
larger values of the metrics lead to a better separation system.

3.2. Implementation Details

The SML approach includes a pair of networks. We use the
DPRNN [16] backbone with 3-blocks (instead of 6-blocks as
in the official version) for both networks in the SML frame-
work. Each DPRNN block contains two BLSTM layers for
local and global processing. We use the Adam optimizer [30],
the initial learning rate of 1e−4 and a decaying rate of 0.98 for
every two epochs. The confidence factor c is initialized to 15
and increases by +1 after 10 epochs. The maximum value
of c is set to 20. The λ is set to 0.001. The training pro-
cess was considered converged and automatically stops when
the validation loss of both networks don’t decrease in 15 con-
secutive epochs. All the networks are trained with uPIT to
maximize SI-SNR and 4-second long segments. A gradient
clipping method with a maximum L2-norm of 5 is used dur-
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ing training and the batch size of 4.

3.3. Performance Comparison

Comparison with other mechanisms. To examine the effec-
tiveness of our proposed SML, we have compared the sepa-
rated performance of the SML method to other training mech-
anisms including the baseline (independently training), KD,
and ML. We use the online training in the KD method i.e.,
both the teacher and student networks are simultaneously up-
dated during the training process. The process of knowledge
transfer takes only one way in the training process i.e., student
network learns from reference sources and is imparted knowl-
edge from teacher network. The ML method uses all predic-
tions of the two networks for sharing knowledge while SML
only retains the high-quality predictions for sharing knowl-
edge. All methods are trained with the same network archi-
tecture i.e., DPRNN 3-blocks. The teacher network of the
KD approach is the DPRNN 6-blocks. As shown in Table 1,
the performance of the KD approach insignificantly improves
compared to the baseline method (14.2 dB vs 14.1 dB SI-
SNRi). R. Aihara et al., [31] have shown that there was no dif-
ference in the student network’s performance with and with-
out the teacher. The reason behind this issue is the huge dif-
ference between the teacher network’s output and that of the
students. In [32, 33, 34], the authors have demonstrated that
the capacity gap between the large teacher and the small stu-
dent is one of the notable limitations of the KD approach.
As a result, the student network cannot effectively exploit the
knowledge transferred from the teacher.

Table 1. Comparison of the performance of the SML ap-
proach with other mechanisms on the WSJ0-2mix dataset.

Mechanisms SI-SNRi SDRi STOI PESQ

Baseline 14.1 14.2 0.92 2.82
KD 14.2 14.3 0.92 2.83
ML (network 1) 14.4 14.6 0.92 2.86
ML (network 2) 14.5 14.8 0.93 2.88
SML (network 1) 15.1 15.3 0.94 2.93
SML (network 2) 14.8 15.0 0.94 2.92

Different from KD, there is no capacity gap in the ML
approach, thus the performance of the students in the ML ap-
proach improved but not significantly compared to the base-
line method (14.5 vs 14.1 dB SI-SNRi). With both KD and
ML approaches, all output predictions from the teacher net-
work or friend network are utilized to guide the training of
the remaining network. However, in many cases, the outputs
of these networks are not good predictions (incorrect knowl-
edge), thus training with both correct and incorrect knowl-
edge causes a significant decrease in the performance of the

network. Our SML approach can address the above limitation
via a mechanism of selectively sharing knowledge with each
other. As a result, SML performance outperforms both the
baseline, KD, and ML approaches on both all metrics.
Comparison with the state-of-the-art methods. In this part,
we present our experimental studies of the SML approach
against the state-of-the-art methods. As shown in Table. 2,
the proposed SML method has obtained higher SI-SNRi and
SDRi while utilizing a smaller model size. In particular, our
performance is only lower than 3.7 dB SI-SNRi compared
to DPRNN [16] while the model size is much smaller than
DPRNN (0.9M vs 2.6M). Comparison with the same model
size i.e., DPRNN 3-blocks with 0.9M params, DPRNN 3-
blocks only achieves 14.1 dB SI-SNRi and 14.2 dB SDRi,
meanwhile, our method outperforms DPRNN 3-blocks by 1.0
dB SI-SNRi and 1.1 dB SDRi. It implies that the SML ap-
proach drives each network to learn more useful information
from sharing/learning knowledge with each other. As a result,
our proposed SML method has better generality and extensi-
bility for any network backbone.

Table 2. Comparison of the SML approach to state-of-the-art
methods on the WSJ0-2mix dataset. In which, the model size
is the total of parameters used in each model.

Method Model Size SI-SNRi SDRi

DPCL++ [27] 13.6M 10.8 -
ADANet [5] 9.1M 10.4 10.8
uPIT-BLSTM [4] 92.7M - 10.0
TasNet-BLSTM [11] - 10.8 11.1
Conv-TasNet [12] 5.1M 15.3 15.6
FurcaNeXt [35] 51.4M - 18.4
DPRNN 6-blocks [16] 2.6M 18.8 19.0
DPRNN 3-blocks [16] 0.9M 14.1 14.2
SML (DPRNN 3-blocks) 0.9M 15.1 15.3

4. CONCLUSION

In this work, we have proposed a novel SML approach for
speech separation, to improve the performance of each peer
network in a cohort. In our proposed SML method, each net-
work is trained with supervised learning and knowledge dis-
tillation selectively from the other network. The exchange
and sharing of knowledge between two networks help to en-
hance the generalization performance. The experimental re-
sults have shown that the SML approach outperforms other
training mechanisms such as independently training, KD, and
ML. In addition, only with 0.9M params, the SML approach
achieves competitive performance compared to state-of-the-
art heavy networks.
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