

Stereo InSE-NET

Stereo audio quality predictor transfer learned from mono InSE-NET

ARIJIT BISWAS

GUANXIN JIANG

153RD AES CONVENTION, NEW YORK, ONLINE EVENT, 27 OCTOBER 2022

Vision & Scope

Vision

- Develop a consistent and reliable objective quality metric for audio.
- Provide a valuable tool, e.g., for audio codec-related R&D.

Scope

• Demonstrate consistent and reliable stereo audio quality prediction for coded audio, including non-waveform coding tools, e.g., spectral band replication, parametric stereo.

We aim to make use of existing data and work with pre-trained models!

PRE-INVESTIGATION*

Mimicked the quality score predicted by an objective quality metric (ViSQOL-v3) with a deep neural network (DNN), followed by improving over it - completely utilizing programmatically generated data!

*G. Jiang, A. Biswas, C. Bergler, and A. Maier, "InSE-NET: A Perceptually Coded Audio Quality Model based on CNN," in 151st AES Convention, 2021 (Best Student Technical Paper Award).

ViSQOL-v3 to InSE-NET

BEYOND MONO

Towards Stereo InSE-NET

PRIOR RESEARCH - AUDIO QUALITY MODELS BEYOND MONO

All the relevant papers are discussed in our paper.

Deep Learning-based models

Spatial audio quality metric (SAQAM)*: evaluates similarity between any pair of binaural signals in terms of localization accuracy and sound fidelity degradation, however:

Does not predict an easy-to-interpret (e.g., MUSHRA) quality score.

Predict distances from the features delivered by the DNN

□ Only trained for speech signals at 16 kHz.

Unaware of any deep learning-based (coded) stereo audio quality prediction model for general audio signals at 48 kHz!

*P. Manocha, et al., "SAQAM: Spatial Audio Quality Assessment Metric," in Interspeech 2022.

Stereo MPEG USAC Verification Listening Tests

Stereo low-rates Stereo high-rates

				girraces	
	R_p	R_s	R_p	R_s	
ViSQOL-v3*	0.777	0.782	0.825	0.906	
Mono InSE-NET**	0.806	0.788	0.847	0.895	Trained to mimic mono ViSQOL-v3 (w/ noise & silence)
Stereo InSE-NET	0.888	0.838	0.892	0.874	Trained w/ stereo listening tests
Stereo InSE-NET	0.897	0.861	0.907	0.899	+ stereo listening tests with swapped LR
Stereo InSE-NET	0.915	0.88	0.912	0.911	+ hybrid stereo coding listening tests (& swapped LR)
Stereo InSE-NET (w/o M)	0.922	0.900	0.910	0.910	Equivalent performance w/o mid-channel

*ViSQOL-v3 compares the mid-signal: $M = \frac{1}{2}(L + R)$

**Signals fed to the model for comparison are the mid-signal.

Codecs included in the MUSHRA tests were AMR-WB+, HE-AAC, and USAC. AMR-WB+ and USAC codecs were not seen during training. The lowest stereo HE-AAC bitrate was also not seen.

Mono MPEG USAC Verification Listening Tests

Mono low-rates

	R _p	R_s	
PEAQ Advanced	0.650	0.700	
ViSQOL-v3	0.810	0.840	
Mono InSE-NET	0.830	0.835	
Stereo InSE-NET*	0.905	0.903	Training with listening tests improves correlation coefficients!

*The stereo signal fed to the model for comparison is dual-mono (L = R).

Mono listening tests were not used in training.

Codecs included in the MUSHRA tests were AMR-WB+, HE-AAC, and USAC.

AMR-WB+ and USAC codecs were not seen during training. The lowest stereo HE-AAC bitrate was also not seen.

Stereo InSE-NET: deep learning-based coded
stereo audio quality predictor at 48 kHz.
Programmatically generated data for training
is powerful, but ...
Data augmentation: continue to engineer training
data utilizing audio (coding) domain expertise.
Beyond stereo: binaural, multi-channel, ...

Listening tests and data derived from listening tests also provides a benefit.

THANK YOU

_

RESULTS PER CODEC

Stereo MPEG USAC Verification Listening Tests

Stereo low-rates

	Mono InSE-NET		Stereo InSE-NET	
Codecs	<i>R</i> _p	R_s	R _p	R _s
AMR-WB+	0.868	0.842	0.960	0.904
HE-AAC	0.830	0.790	0.945	0.877
USAC	0.891	0.860	0.976	0.943

Stereo MPEG USAC Verification Listening Tests

Stereo high-rates

	Mono InSE-NET		Stereo InSE-NET	
Codecs	<i>R</i> _p	R_s	R _p	R _s
AMR-WB+	0.864	0.852	0.955	0.925
HE-AAC	0.871	0.925	0.946	0.949
USAC	0.909	0.920	0.964	0.942

Mono MPEG USAC Verification Listening Tests

Mono low-rates

	Mono InSE-NET		Stereo InSE-NET	
Codecs	R _p	R_s	R_p	R_s
AMR-WB+	0.889	0.856	0.948	0.922
HE-AAC	0.853	0.791	0.945	0.887
USAC	0.873	0.881	0.950	0.939