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The landscape in the context of several 
signal processing applications and 
even education [1] appears to be sig-

nificantly affected by the emergence of 
machine learning (ML) and particularly 
deep learning (DL). The main reason for 
this is the ability of DL to model complex 
and unknown relationships between sig-
nals and the tasks of interest. In particu-
lar, supervised DL algorithms have been 
fairly successful at recognizing perceptu-
ally or semantically useful signal infor-
mation in different applications (e.g., 
identifying objects or regions of interest 
from image/video signals or recognizing 
spoken words from speech signals, such 
as in speech recognition). In all of these 
tasks, the training process uses labeled 
data to learn a mapping function (typical-
ly implicitly) from signals to the desired 
information (class label or target label). 
The trained DL model is then expected 
to correctly recognize/classify relevant 
information in a given test signal. There-
fore, a DL-based framework is, in gener-
al, very appealing since the features and 
characteristics of the required mapping 
are learned almost exclusively from the 
data without resorting to explicit model/
system development.

Scope
The aforementioned focus on implicit 
modeling unfortunately also raises the 
issue of lack of explainability/interpret-
ability of the resultant DL-based map-

ping or the black box problem. As a 
result, explainable ML/DL is an active 
research area [2], [3], [4], [5], where the 
primary goal is to elaborate how the 
ML/DL model arrived at a prediction. 
We, however, note that, despite the 
efforts, the commentary on the black 
box problem appears to lack a techni-
cal discussion from the viewpoint of 1) 
its origin and underlying reasons and 2) 
its practical implications on the design 
and deployment of ML/DL systems. 
Accordingly, a reasonable question 
that can be raised is as follows: Can 
the traditional system-centric approach 
(which places an emphasis on explic-
it system modeling) provide useful 
insights into the nature of the black box 
problem and help develop more trans-
parent ML/DL systems?

Context and relevance
The answer to this question is a yes. This 
can be better understood by differentiat-
ing between a system-centric approach 
and a data-centric paradigm [1]. The 
former generally aims at explicit mod-
eling of the physical process by rely-
ing on a priori information and a more 
analytical perspective. Some examples 
are the characterization of noise as 
high-frequency components, the use 
of gradient or edge (high-frequency) 
information for shape analysis in image/
video signals, exploiting the correlation 
between signal samples (say for signal 
compression), locating the test statistic 
on a known probability density function 
(e.g., in hypothesis testing), and so on. 

As a result, system design philosophy 
and performance analysis remain large-
ly amenable to scrutiny. 

By contrast, the data-centric approach 
(i.e., ML/DL) typically focuses on imp-
licit system modeling by learning a 
ma p ping function from input to desired 
output. This is particularly aided by the 
powerful modeling capabilities of DL [6] 
that offer the flexibility of evolving a suit-
able mapping function, i.e., determining 
a set of weights from the training data. 
However, a direct interpretation of the 
mapping learned by DL is generally diffi-
cult, giving rise to the black box problem. 
Hence, it is reasonable to ask the stated 
question in the context of how a system-
centric approach can help enable a better 
understanding of the black box problem 
in ML/DL and its practical implications. 
This is expected to be crucial for making 
meaningful progress toward the develop-
ment of more transparent and explain-
able ML systems.

Therefore, the primary purpose of 
this lecture note is to shed light on the 
stated aspects of explainable ML. We 
also attempt to provide some perspec-
tives on how to mitigate it from the 
viewpoint of ML system design. To 
achieve these objectives, we rely on a 
system-centric philosophy to develop 
our arguments. We limit ourselves to 
an easy-to-understand, yet meaning-
ful, example of a simple low-pass filter. 
This, in our opinion, is not only conve-
nient but also makes the lecture note 
accessible to readers from diverse back-
grounds.

Explainable Machine Learning
The importance of a system-centric perspective
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Prerequisites
This lecture note assumes familiarity with 
basic concepts in signals and systems.

Problem statement and solution
Let :g R Rp q

"  denote the mapping 
function from an input x R p!  to the 
actual (desired) output .y Rq!  For 
instance, consider the application of 
object detection in images where we 
wish to recognize which of, say, three 
objects of interest is present in a 100 
# 100 image. In this case, we have 
p 100 100#=  and ;q 1=  i.e., the 
output ( )xg  is either 0 or 1 or 2 cor-
responding to one class (object) label. 
Similarly, in the scenario of object 
localization, we wish to determine the 
location of an object in the image. We 
may denote this by a bounding box 
specified by a set of four coordinate 
points. Accordingly, p 100 100#=  
and .q 8=  We note that the mapping 
function g in both stated applications, 
and indeed in many others, is typically 
unknown. This is where DL in particu-
lar has gained popularity since it can 
potentially learn a mapping gt  from a 
set of labeled data. One then hopes that 
gt  is an accurate estimator of g from a 
practical viewpoint.

At this point, it would be instructive 
to describe briefly the basic working of 
DL using notation. As mentioned, we 
denote the input to the DL model as 

;x R p!  i.e., x  is a vector of length p. 
Then, the q-dimensional output of the 
DL model y Rq!t  is

 ; .y xg i=t t ^ h  (1)

Here, , ...,W WL1 1i= +6 @ denotes 
the parameter consisting of L + 1 
weight matrices (for simplicity, we 
ignore the intercept or bias term). 
The entries of matrices , ...,W WL1 1+  
denote the weights of the connections 
among different neurons present in 
a DL model/architecture [6]. These 
neurons are arranged in a DL model 
through L hidden layers. As an illus-
tration, we show in Figure 1 a DL 
model with three hidden layers; i.e., 
L = 3. Notice that in this example the 
first two hidden layers have three neu-
rons, while the third has two neurons. 

Moreover, let us assume that p = 2 and 
q = 1. Hence, the input and output lay-
ers have two neurons and one neuron, 
respectively. The reader can observe 
from Figure 1 that there are four weight 
matrices: , ,W W1 2  and W3  correspond 
to the three hidden layers, while W4  
represents the weight matrix for the 
output layer. To compute the output ,yt  
the DL model uses , ...,W W1 4  in series. 
Also, a nonlinearity is introduced at 
each neuron via the use of the function 

: .f R Ra
c c
"  It is the elementwise 

nonlinear function commonly referred 
to as an activation function. Thus, the 
output can be written as

  .y W W W W xf f f fa a a a4 3 2 1=t ^ ^ ^ ^ hhhh  (2)

Note that because we have chosen  
p = 2 and q = 1 for the example in  
Figure 1, the dimensions of x, W1, 
W2, , ,W W3 4  and yt  will be 1 # 2,  
2 # 3, 3 # 3, 3 # 2, 2 # 1, and 1 # 1, 
respectively. The goal of training the 
DL model is [6] to find the parameter 

, ...,W WL1 1i= +6 @ via training on a set 
of labeled data such that yt  is close to y 
(the actual or desired output).

Problem statement
We note that there are two aspects of 
a DL system: design and validation. 
The former refers to the choice of DL 
architecture (e.g., activation function fa, 
number of layers L, number of neurons 

in each layer, and so on) and subsequent 
optimization [6] to find the parameter 

.i  The latter refers to application-spe-
cific benchmarking of the trained DL 
model on an independent test set. Thus, 
both aspects of the DL model depend 
heavily on data. As already men-
tioned, we refer to this as a data-centric 
approach. Consequently, one typically 
relies only on implicit modeling (i.e., 
without the need for explicit signal 
analysis or handcrafted signal features) 
and the prediction accuracy as surro-
gates to explicit system analysis. Such a 
data-centric approach is in contrast to a 
system-centric approach, which is typi-
cally based on explicit modeling and a 
priori knowledge. Therefore, our prob-
lem statement follows naturally and 
can be stated as follows: What addi-
tional and practically useful insights 
can a system-centric approach reveal 
that can eventually help in the design of 
more transparent and explainable ML/
DL systems?

Solution
To identify practically meaningful ins-
ights about the explainability aspects 
of a DL system, we rely on the idea of 
exploiting explicit a priori knowledge, 
which is fundamental to the system-
centric approach. For instance, channel 
modeling in communication systems 
can exploit knowledge of a probabilistic 
model for the channel filter taps (e.g., 
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FIGURE 1. A fully connected feedforward network with three hidden layers ( ).L 3=  The first two 
hidden layers have three neurons, while the third has two neurons. As p 2=  and q 1=  in this 
example, the input and output layers have two neurons and one neuron, respectively. fa  denotes 
the activation function, and , ,W W1 4fi = 6 @  is the parameter learned via training. The entries of 

, ,W W1 4f  denote the weights of the connections between the neurons. Refer to Figure 2 for an 
example.
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using a Rayleigh distribution). Similarly, 
characterizing visual signals at different 
frequencies and orientations (e.g., by 
using Gabor filters) attempts to explic-
itly mimic the frequency and orientation 
selectivity of the human visual system 
in different applications (such as texture 
analysis). 

Hence, the system-centric approach 
typically attempts to approximate g via 
explicit characterization of different 
subsystems (components) of the physical 
process/application under consideration. 
This, in turn, allows a multidimensional 
analysis of the strengths and weakness-
es of each subsystem explicitly from 
the viewpoint of a certain established 
knowledge base in the context of the 
application. Inspired by this philosophy, 
we pursue the idea of using an explicit 
system S (with known g) as a reference. 
We then attempt to model S using DL; 
i.e., we train a DL network such that 
the learned function .g g.t  Because 
S is explicit by choice, an analysis of 
the resultant DL-based model of S can 
reveal additional insights in the context 
of our problem statement.

Several choices of S are possible. But 
in this lecture note, we select a simple 
filtering application where we wish to 
attenuate perceptually less relevant sig-
nal information. This is a common use 
case in both traditional (signal denoising, 
smoothing, antialiasing, and so on) and 
recent application areas (such as spatial 
audio rendering in augmented and vir-
tual reality, the design of smart cameras 
for the Internet of Things, and medical 
imaging, among others). Accordingly, 
we let S be a low-pass (moving average) 
filter and use it, as an example, to filter 
out signal information beyond 2 kHz. 
Apart from its conceptual simplicity, 
the said choice of S also enables a fairly 
straightforward DL-based implementa-
tion from the perspective of generating 
training data and subsequent optimiza-
tion. Now, from a system-centric per-
spective, S is conveniently described by 
the following difference equation:
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(3)

where , , ..., .k M0 1 1= -  Note that the 
system S denoted by (3) is explicit and 
can also be visualized in the frequency 
domain for a clearer physical interpre-
tation. Setting M = 2, we arrive at a 
simple low-pass filter with filter coef-
ficients [ ] [ ] . .w w0 1 0 5= =  Therefore, 
the output is simply the average of the 
present and past samples in the input 

[ ],x n  i.e.,

 [ ] . [ ] . [ ] .y x xn n n0 5 0 5 1= + -  (4)

We now attempt to model S 
using DL-based regression. To that 
end, we denote the training data as 

, .tz ,...,i i i T1=^ h" ,  Because M = 2, z  is a 
T 2#  matrix with zi  being the ith row. 
t  denotes a T 1#  vector of the target 
(desired) values. Given our problem 
setting, ti  simply denotes the average 
of the two numbers in zi . T represents 
the size of the training data. The train-
ing process seeks to estimate the func-
tion gt  such that , ,t zgi i i= )t ^ h  where the 
parameter i)  minimizes a chosen loss 
function ,,  i.e.,

 , , .z targ min ,i i=)
i
^ h  (5)

We employed the widely used mean 
square error (MSE) as the loss function, i.e.,

 , , , .z t t zg
T
1

i i
i

T

1

, i i= -
=

2
t ^^ hh /  (6)

Accordingly, we seek a mapping 
function such that the sum of squared 
differences between the predicted 
value ,zg i it ^ h and the correspond-
ing target value ti  is minimized, i.e., 

, , .z t, #i e^ h Here, e  represents the tol-
erance or the maximum error allowed 
during model training. Setting an 
appropriate value of e  is crucial and 
typically depends on applications as 
well as the size of training data T. In 
this lecture note, we are not overly 
concerned about these aspects and 
simply choose 10 4e= -  and T = 1,000 
for our experiments. In addition, a 
complete specification of a DL-based 
model/architecture requires several 
hyperparameters [6], including the 
number of hidden layers L, the number 
of neurons in each hidden layer, the 
type of activation function fa, and the 
loss function .,  Hence, these need to 

be chosen before a DL model can be 
trained. Once the DL model is trained 
properly, one expects that it will gen-
eralize well to data that did not appear 
in the training set. In other words, it 
is hoped that the prediction ,zg test it ^ h 
for any test signal ztest  is close to the 
unknown target ytest (i.e., it is similar 
to how the trained DL model behaved 
for the training data). In this lecture 
note, we used three commonly used 
activation functions, namely, sigmoid 

( ) ,ef x 1 1 x
a = + -  rectified linear 

unit (ReLU) ( ) ( , ),maxf x x0a =  and 
leaky ReLU ( ) .f x ,

a
x x

x x
0
0<=
$

a"  We 
thus obtained three trained DL net-
works, namely, , ,N Ns r  and Nlr  ( fa =

sigmoid, Ref LUa = , and fa = leaky 
ReLU, respectively) with respective 
functional approximations , ,g gs rt t  and 

.glrt  These networks have a single hid-
den layer (L = 1) and are shown in Fig-
ure 2. Another network, namely N( )

lr
3  

(with approximation function g( )
lr
3t ), 

was also trained with L = 3 and fa= 
leaky ReLU. This network is shown 
in  Figure 3.

Further, we employed MSE,=  for 
training all four DL networks. Note 
that all of these DL models/networks 
resulted in 10 4.e -  on the train-
ing dataset. Here, one also needs to 
ensure mitigation of the issue of over-
fitting (or memorization), i.e., a DL 
model performing well on training 
data but giving a relatively high pre-
diction error on a test set. To that end, 
a practical and well-accepted solution 
is to examine the performance of the 
trained DL model on a test set that is 
independent of the training data [6]. 
Accordingly, we cross-validated the 
performance of the trained DL model 
on an independent test dataset with 
200 data points. We found that all four 
trained DL models resulted in an error 

;10 4. -  i.e., the performance was 
similar to that on the training dataset. 
Thus, , , ,N NNs r lr  and N( )

lr
3  represent 

DL-based models of S.

A closer look at the black  
box problem
As mentioned, explainable ML/DL 
seeks to get some insights into the 
black box (the trained ML/DL model) 
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by elaborating why a trained ML/DL 
model arrived at a particular prediction. 
However, there appears to be a lack of 
discussion on what really is meant by 
the black box nature of a trained DL 
model in the first place. Therefore, to 
understand the issue more closely, it 
is convenient to first analyze why S as 
represented by (4) is not a black box. 
Writing (4) in the frequency domain, 
we get

 
.

,

Y e e X e

H e X e

0 5 1j j j

j j

= +

=

X X X

X X

-^
^
^

^
^h

h
h
h

h
 (7)

where we use capital letters to denote 
the discrete-time Fourier transform 
of the corresponding signals. The 
symbol Ω represents the frequency 
of discrete signals (thus, principally, 

, .! r rX - h6 @  Expression (7) tells us 
that the output Y e jX^ h of S is simply 
an elementwise multiplication of the 
input X e jX^ h with the system transfer 
function .H e jX^ h  Thus, observing the 
magnitude of H e jX^ h shown in Fig-
ure 4(a) allows us to understand the 
explicit nature of S. That is, the system 
S essentially scales down (reduces) 
the strength of higher frequency com-
ponents in the input. This analysis is 
beneficial from a practical perspective 
for the following reasons. First, it can 
provide prior meaningful insights and 
analysis about system output without 
actual implementation. For instance, a 
frequency 0X  cannot occur in the out-
put if it does not exist in the input. Sec-
ond, it allows us to conceptualize and 
eventually design systems (algorithms) 
for, say, signal denoising or smooth-
ing, antialiasing, equalizing, and so on. 
This is enabled by the fact that unde-
sired signals in the input (e.g., noise or 
perceptually irrelevant components) 
can be appropriately characterized and 
then attenuated.

As an example and as shown in 
Figure 4(a), let us set the cutoff fre-
quency /2c rX =  rad/sample; i.e., 

. H e0 7 1j# #X^ h  for /0 2# # rX  
(or, equivalently, .H e 0 7j 1X^ h  for 

/ ).21 #r rX  Assuming the sampling 
frequency fs  to be 8 kHz, we observe 
that S attenuates, from a practical per-
spective, components beyond 2 kHz. It 
is, of course, possible to suitably mod-

ify the filtering characteristic depend-
ing on the application (e.g., by choosing 
another cutoff frequency). Thus, (7) 
and Figure 4(a) provide quantifiable 
insights into the working of S. Such 
insights also enable practically useful 
generalizations of S to other use-case 
scenarios.

With the mentioned aspects of the 
system-centric approach in mind, it 
now becomes convenient to examine 
if the corresponding DL-based model 
of S is amenable to a similar analysis 
or not. To that end, we take a closer 
look at the trained DL network ,Nr  
which is shown in Figure 2, and begin 
by writing the explicit input–output 
relationship. Let [ ],x xz 1 2test =  where 

, .x x R1 2 !  Then, using the weight 
matrices W1  and W2  of the trained 
model ,Nr  we can write the expression 
for ytest  as

{ , ( . ( , .

. ) .

( , . . ))}.

max max

max

y x

x

x x

0 0 8283 0 0 6994

0 7760 0 1796

0 0 4329 0 8067

1

2

1 2

test =

+ -

+

 
 

(8)

Now, by design, Nr  is practically 
equivalent to S. This, in turn, implies 
that the corresponding function grt  
defined by (8) essentially approximates 
a low-pass filter by using a weighted 
combination of nonlinear ( )max $  func-
tions. However, establishing the low-
pass nature of Nr  from an analysis of 
(8) may be difficult, and this has seri-

ztest ytest

fa

fa

fa

fa : sigmoid

1.5873 2.9178

–8.668
0.8

45
7

–1.2101

–0.9897

W1 =
1.5873
0.8457

–0.9897
–1.2101 , W2 =

2.9178
–8.668 ,

Ns (gs)

!

ztest ytest

fa

fa

fa

fa : ReLU

0.4329 –0.1796

0.8283
0.8

06
7

0.7760

0.6994

W1 =
0.4329
0.8067

0.6994
0.7760 , W2 =

–0.1796
0.8283 ,

Nr (gr)

!

ztest ytest

fa

fa

fa

fa : leaky ReLU

0.9798 0.2678

0.8595
0.8

26
0

0.2917

0.3147

W1 =
0.9798
0.8260

0.3147
0.2917 , W2 =

0.2678
0.8595 ,

Nlr (glr)

!

FIGURE 2. The three trained DL networks , ,N Ns r  and ,N lr  which generate the respective approxi-
mation functions , ,g gs rt t  and glrt  and, by design, .g g g gs r lr= = =t t t  The input, hidden, and output 
layers are shown, respectively, in green, red, and black for clarity. Information about trained weights 
and activation functions is given below each network.
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ous implications from a practical per-
spective. Specifically, it means that we 
do not know how exactly the trained 
weights in Nr  (refer to matrices W1  and 

)W2  relate to its low-pass filtering char-
acteristic. This lack of practically mean-
ingful connection between the trained 
weights and their effect on the input sig-
nal essentially constitutes the black box 
nature of DL. One can similarly analyze 
the models , ,N Ns lr  and N( )

lr
3  and arrive 

at conclusions similar to that for .Nr

We will now analyze the limita-
tions of the said black box issue from a 
practical perspective. Before doing that, 

we note that the presence of unknown 
and random noise in the training data 

,{( )}z t , ,i i i T1 f=  and the choice of the 
loss function (e.g., MSE in our case) will 
also affect optimization. As a result, the 
weight matrices W1  to W4  (in Figures 
2 and 3) might change. This will, how-
ever, not affect the analysis and conclu-
sions made as long as the resultant DL 
models can approximate S.

Practical implications of the  
black box problem
Despite its seemingly theoretical under-
pinnings, a deeper understanding of 

the black box nature in ML/DL is also 
important from a practical viewpoint. 
To elaborate on this, it is convenient to 
consider another use case where percep-
tually irrelevant signal information now 
lies beyond, say, 1.25 kHz (and not 2 
kHz). Obviously, S cannot directly serve 
the purpose in this case. However, from 
a system-centric perspective, it is fairly 
straightforward to see that the required 
filter can be constructed by using M 3=  
in (3). Thereafter, an analysis similar to 
that of S in (7) and Figure 4(a) can be 
carried out. Setting a cutoff frequency 

/5 16c rX =  rad/sample, as visually 
illustrated in Figure 4(b), will then result 
in the desired system .Sl  Thus, while S 
and Sl are two different systems (filters), 
they are essentially unified via an inter-
pretable and analytical philosophy. 

However, the situation is very differ-
ent in the case of .Nr  Specifically, there 
may not be a general and interpretable 
procedure of modifying the weights of 
Nr  such that the resultant model, say 

,Nrl  has a cutoff frequency of 1.25 kHz. 
The reason is, to reiterate, the lack of 
meaningful connection between the 
trained weights and the filtering char-
acteristic of .Nr  Thus, the analysis of S 
afforded by (7) and Figure 4(a) not only 
offers clear insights into S but also pro-
vides a systematic approach to extend 
the scope to related practical use cases. 
Likewise, other practical aspects, such 
as controlling ripples in the passband or 
controlling gain in the transition band, 
can be explicitly handled in S. By con-
trast, DL-based modeling lacks such 
practically meaningful functionality 
due to the black box nature.

Another notable practical limitation 
of the black box problem can show up 
when the ML/DL needs to be deployed 
in constrained environments where, 
say, latency, privacy, or lack of com-
munication bandwidth can be important 
factors. In this use case, the prediction 
and update of the DL trained model 
must take place with limited comput-
ing resources, for instance, on a local 
embedded processing near the sensor or 
on the edge servers [7]. For that reason, 
the number of parameters/weights of a 
DL model (which is one of the measures 
of model complexity) must typically be 

W1 W2 W3 W4

fa

fa

fa

fa

fa

fa

fa

fa

ztest
ytest

W1 =
0.9535
0.0939

0.2735
0.8767 , W2 =

0.5287
0.7715

0.5002
0.4054

fa : leaky ReLUW3 =
0.5053
–0.0784

0.7080
0.1601

0.3826
0.6882 , W4 =

0.2209
0.4241
0.2827

,

Nlr   glr   

!(3) (3)

FIGURE 3. Another trained DL network N ( )
lr
3  (with ),L 3=  which generates the approximation 

function g ( )
lr
3t  such that .g g( )

lr
3 =t  The input, hidden, and output layers are shown, respectively, in 

green, red, and black. Information about the trained weights and activation function is also given 
below the network. For visual clarity, the weights are not shown on the connections between 
neurons.
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FIGURE 4. Plots of magnitude response in the range ,0 r6 @  for two values of .M  (a) M 2=  with 
the cutoff frequency chosen as /2c rX =  (i.e., 2 kHz). (b) M 3=  with the cutoff frequency 
chosen as /5 16c rX =  (i.e., 1.25 kHz).
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reduced while maintaining practically 
reasonable prediction performance. 
(Model complexity also includes other 
components [7], such as the number of 
mathematical operations needed, mem-
ory requirement, expressive capacity, 
and so on.) 

In this context of on-device/on-
edge computation, the black box nature 
can be a bottleneck in both DL model 
design and compression (reduction in 
the number of weights). The reason is 
that the lack of a clear and quantifi-
able connection between the trained 
weights and DL model functionality 
may prohibit a systematic understand-
ing of the importance of the weights. 
As a result, making meaningful deci-
sions about DL model reduction may 
become difficult and prone to trial 
and error. For instance, aspects such 
as which weights to quantize more (or 
less) and the extent of quantization, 
and/or which connections to prune 
(i.e., setting some of the weight values 
to 0), and so on, may remain unclear. 
On the other hand, the system-centric 
approach can provide more flexibility 
toward explicitly analyzing the filter-
ing characteristic of S if w is changed 
for any reason.

The black box nature will also, in 
general, prohibit meaningful analysis 
of the DL model from the viewpoint of 
its weaknesses (if any). Therefore, in 
this aspect, one might be constrained 
to merely analyze the output of DL 
and see if it matches the desired out-
put or not (an almost exclusive focus 
on prediction accuracy). This poten-
tially leaves room in terms of direct 
DL system analysis. In comparison, 
the system-centric approach allows 
a more direct system analysis. As an 
illustration, we may consider the sys-
tem .Sl  As can be seen from Figure 
4(b), the transfer function of Sl shows 
a sidelobe; i.e., the magnitude increases 
slightly from 0 at /2 3r  to about 0.35 
at frequency .r  Obviously, such sid-
elobes should be as small as possible 
in the light of the use case of attenu-
ating information beyond 1.25 kHz.  
Hence, this sidelobe represents a limita-
tion of Sl and encourages steps for miti-
gating the same. A similar functionality 

in the corresponding DL-based system, 
say, ,Nr  might not be possible owing to 
the black box nature.

Finally, the reader will note from 
Figure 2 that , ,N Ns r  and Nlr  have just 
six trainable weights. Hence, these DL 
models are not really complex from 
the viewpoint of dimensionality of the 
trained weights, especially in compari-
son to several well-known DL-based 
architectures in vision (e.g., a 50-layer 
ResNet [8] has more than 25 million 
trained weights). Yet, all of them are 
essentially black boxes for the purpose 
at hand. Thus, the black box problem 
may not necessarily be attributed to high 
dimensionality of the trained weights 
alone. Instead, as we have illustrated, it 
is essentially a practical issue related to a 
lack of meaningful association between 
the trained weights and the correspond-
ing functionality of the DL model.

Why is explainability fundamental  
to DL system design?
We note that the need for explainable 
ML/DL is largely fueled by high stakes 
applications [2], like health care, autono-
mous driving, law enforcement, finance, 
and so on. Indeed, there is no denying 
that unexplained mistakes or wrong 
decisions made by a black box model 
in such applications can have serious 
implications. However, it is also equally 
interesting to note that explainability is, 
in fact, a fundamental concept for ML/
DL system design and not merely a post-
design requirement. To appreciate this 
aspect, it is once again convenient to 
think from a system-centric perspective 
and consider our example of S. Observe 
that S is uniquely characterized by (4) or 
equivalently via (7). As a consequence, 
any analysis of S (or even Sl) from the 
perspective of its explainability, per-
formance (strengths and/or weakness), 
implementation issues, and so on can be 
carried out in an unambiguous fashion. 
However, this is not the case with DL-
based modeling of S as all four models, 

, , ,N N Ns r lr  and N( )
lr
3 , accurately mimic 

the functionality of S. That is, we have 
g g g g g( )

s r lr lr
3

= = = =t t t t . In fact, one 
can train several other DL models by 
choosing different L, number of neurons 
in each layer, fa, and so on. Consequently, 

g can be potentially approximated by a 
large number of DL models. This may 
seem useful at first sight. However, a clos-
er scrutiny will reveal that such a nonu-
nique DL-based approximation leads to 
more questions than answers about the 
unknown function g. In particular, one 
can raise the following questions:
1) Which DL models’ explanation 

should one rely upon to get accurate 
insights about the underlying system 
represented by g and why?

2) Since all the DL models under ques-
tion approximate g quite well, 
should they all end up having the 
same/similar explanations?
In the context of the first question, we 

may lack a systematic procedure to zero 
in on one DL model (out of several can-
didates, such as , , ,N N Ns r lr  and N( )

lr
3 )  

and its corresponding explanation as 
a surrogate to g. The second question 
also reveals interesting facet of DL 
modeling. If the answer to it is yes, 
then again there may be difficulties 
in establishing the equivalence of the 
said DL models, which have different 
architectures (in terms of L, number 
of neurons in hidden layers, and acti-
vation functions). On the other hand, 
if the answer to the second question 
is no, then we are potentially looking 
at a scenario where we have different 
DL-based explanations for the same 
physical process (as defined by g in our 
example). From a practical perspective, 
this may not be very meaningful. Thus, 
both questions essentially emphasize 
why explainability should be an inher-
ent design principle and one of the first 
in ML/DL system design and not mere-
ly a post hoc analysis procedure.

The case for system-centric-
philosophy-based explainable ML
We have shown that the philosophy of 
explicit modeling can be leveraged to 
understand the black box nature and its 
practical implications in DL-based sys-
tems. It is therefore logical to think that 
the same system-centric philosophy can 
also benefit DL-based system design. 
Indeed, it is possible to exploit a priori 
domain knowledge and explicit tools 
for both DL system analysis and design. 
More specifically, from a DL system 
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design perspective, there can be several 
practically useful implications toward
1) preprocessing of the input data to 

overcome limitations of the DL 
model itself (e.g., utilizing the idea 
of Fourier feature mapping to over-
come the weakness of the standard 
multilayer perceptron [9])

2) incorporating aspects of an explicit 
system into a learning-based frame-
work (e.g., the use of deep unfolding 
for image superresolution [10] or in 
communication systems [11])

3) improving certain aspects of the DL 
model itself, like performance (for 
instance, the use of the discrete 
Fourier transform to improve pool-
ing aspects [12] in convolutional 
neural networks or understanding 
connections between DL and graph 
signal processing [13])

4) avoiding training of the DL model 
from scratch and instead building 
upon simpler and interpretable aspects 
of known tools (e.g., the differentiable 
digital signal processing framework 
[14] adapts interpretable digital signal 
processing tools to diverse data via 
learning for audio applications)

5) visualizing the learning process in DL 
layers (e.g., using principal compo-
nent analysis to detect adversarial 
examples [15]), developing an inter-
active visual analytics framework in 
the context of explainable DL ([16], 
[17]), or creating a design space of 
explainable systems for medical 
applications ([18]).
The aforementioned points (not an 

exhaustive list by any means) empha-
size the potential benefits of incorporat-
ing a system-centric philosophy in the 
design and analysis of better performing 
but more explainable ML/DL systems. 
Essentially, this strategy of designing 
system-centric DL models can be a two-
step process: 1) developing a base model 
that might rely more heavily on a priori 
domain knowledge and 2) refining the 
resultant base model via learning from 
application-specific data. This should 
lead to DL systems that may not only 
perform better (both in terms of gen-
eralization and accuracy) but are also 
transparent and amenable enough for a 
practically meaningful scrutiny.

What we have learned
The black box nature of ML/DL rep-
resents a fundamental problem. In 
this context, a system-centric per-
spective can lead to a more in-depth 
understanding of this issue from the 
viewpoint of its origin and practical 
implications. It also helps to appreci-
ate why explainability represents a 
fundamental aspect of ML/DL system 
design. Such understanding may not 
only improve learning outcomes but 
can also provide meaningful insights 
toward improved practical deploy-
ment of ML/DL systems. This deploy-
ment can span a broad canvas, ranging 
from design considerations (including 
enhanced explainability, better gener-
alization, proper model initialization 
and training, and so on) to hardware 
implementations (on-device and under 
constrained environments).
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The system-centric 
approach typically 
attempts to approximate 
g via explicit 
characterization of 
different subsystems 
(components) of the 
physical process/
application under 
consideration.

We let S be a low-pass 
(moving average) filter 
and use it, as an example, 
to filter out signal 
information beyond 2 kHz.

The focus on implicit 
modeling also raises 
the issue of lack 
of explainability/
interpretability of the 
resultant DL-based 
mapping, or the black  
box problem.

What additional and 
practically useful 
insights can a system-
centric approach reveal 
that can eventually 
help in the design 
of more transparent 
and explainable ML/DL 
systems?

Other practical aspects, 
such as controlling 
ripples in the passband 
or controlling gain in the 
transition band, can be 
explicitly handled in S.

The black box problem 
may not necessarily 
be attributed to high 
dimensionality of the 
trained weights alone.

In this context of 
on-device/on-edge 
computation, the black 
box nature can be a 
bottleneck in both 
DL model design and 
compression (reduction in 
the number of weights).

The system-centric 
approach can provide 
more flexibility toward 
explicitly analyzing the 
filtering characteristic  
of S if w is changed for 
any reason.


