

Point Cloud Geometry Compression via Density-Constrained Adaptive Graph Convolution

Dan Wang*, Jin Wang*, Yunhui Shi*, Nam Ling^{\dagger} and Baocai Yin*

* Beijing University of Technology, Beijing, China † Santa Clara University, Santa Clara, CA

Point Cloud (PC)

- > An effective representation of 3D objects or scenes
- Consists of 3D coordinates and attributes information

Wide Application Scenarios

- Autonomous driving
- Augmented/virtual reality (AR/VR)

Challenges for Point Cloud Compression

- ➢ A huge amount of data
- ➢ Irregular, unstructured and unordered

3D Object

3D Scene

Autonomous Driving

AR/VR

Learned Point Cloud Geometry Compression (PCGC) Methods

Octree-based Methods

- Represent Point cloud with octree
- Applicable to large-scale LiDAR

Voxel-based Methods

- Voxelized Point cloud
- ➢ 3D CNN based Transform
- Binary Cross Entropy (BCE) Loss
- Suitable for dense Point cloud

Point-based Methods

- Input Raw Points
- PointNet based Transform
- Chamfer Distance (CD) Loss
- Suitable for sparse Point cloud

Point-based PCGC Methods

◆ Yan's Method ^[1]

- PointNet based Autoencoder structure
- Chamfer Distance (CD) Loss

• Huang's Method ^[2]

- PointNet++ based Autoencoder structure
- Hierarchical reconstruction
- Chamfer Distance (CD) Loss

Gao's Method [3]

- Variational Autoencoder (VAE) structure
- ➤ Neural Graph Sampling (NGS) for feature extraction
- Layered deconvolutions for reconstruction
- Chamfer Distance (CD) Loss

[1] Wei Yan, Yiting Shao, Shan Liu, Thomas H. Li, Zhu Li, and Ge Li, "Deep autoencoder-based lossy geometry compression for point clouds," ArXiv, vol. abs/1905.03691, 2019.
[2] Tianxin Huang and Yong Liu, "3d point cloud geometry compression on deep learning," in Proceedings of the 27th ACM International Conference on Multimedia. 2019, MM'19, p. 890–898.

[2] Hanxin Huang and Yong Liu, 3d point cloud geometry compression on deep learning, in Proceedings of the 27th ACM International Conference on Multimedia. 2019, MM 19, p. 890–898. [3] Linyao Gao, Tingyu Fan, Jiangiang Wan, et al., "Point cloud geometry compression via neural graph sampling," in 2021 IEEE International Conference on Image Processing (ICIP), 2021, pp. 3373–3377.

Drawbacks of Existing Point-based PCGC Methods

- MLPs and 1D convolution result in weight sharing
- Poor representation of local geometric features

How to Improve?

- ♦ Graph Convolution Networks (GCN)
 - Search for KNN to construct local graph of each point
 - Extract and aggregate edge features of center point

Spatial Geometry Information: Density

- Involve interaction between neighbors in the local graph
- ➢ Use Kernel Density Estimation (KDE) to calculate density
- Density varies greatly in key areas (such as edges, corners and the areaswith rapid shape changes)
- For the dense points in the local graph, each point contributes less, on the contrary, sparse points contribute more

Density-Constrained Adaptive Graph Convolution (DCAGC)

- ➢ Use inverse density scale to constrain neighbor features
- ➢ Fuse the global feature and local feature
- > Learn neighbor features dynamically to generate unique adaptive kernel of each point

Density-Constrained Adaptive Graph Convolution (DCAGC)

Proposed PCGC Framework

◆ Encoder

- > DCAGC
- Farthest Point Sampling (FPS)
- > Max pooling

Entropy Engine

- Variational Autoencoder (VAE)
- Hyperpriors for Entropy Modeling [1]

Decoder

- Coordinate Reconstruction (CR)
- Hierarchical reconstruction

Loss Function

- Chamfer Distance (CD) Loss
- Local density (LD) Loss

Loss Function

Rate-distortion optimization (RDO)

$$L = \lambda \cdot D + R$$

$$D = (L_{CD} + \alpha L_{CD}^1 + \beta L_{CD}^2) + \gamma L_{LD}$$

Chamfer Distance (CD) Loss

$$L_{CD}(S_1, S_2) = \frac{1}{|S_1|} \sum_{p \in S_1} \min_{q \in S_2} \|p - q\|_2^2 + \frac{1}{|S_2|} \sum_{p \in S_2} \min_{q \in S_1} \|p - q\|_2^2$$

Local density (LD) Loss

$$L_{LD} = \frac{1}{N} \sum_{i=1}^{N} |\overline{Y_1^i} - \overline{Y_2^i}|, \quad \overline{Y^i} = \frac{1}{k} \sum_{j=1}^{N(i)} ||x_{ij} - x_i||_2$$

Experiment settings

- Dataset
 - ShapeNetCoreV2

• Evaluation Metrics

- Point-to-point PSNR (D1 PSNR)
- Point-to-plane PSNR (D2 PSNR)
- point-to-point Chamfer Distance (CD)
- **Comparison Methods (SOTA)**
 - ➤ Yan's [1]
 - ≻ Huang's ^[2]
 - ➢ Gao's ^[3]

[1] Wei Yan, Yiting Shao, Shan Liu, Thomas H. Li, Zhu Li, and Ge Li, "Deep autoencoder-based lossy geometry compression for point clouds," ArXiv, vol. abs/1905.03691, 2019.

[2] Tianxin Huang and Yong Liu, "3d point cloud geometry compression on deep learning," in Proceedings of the 27th ACM International Conference on Multimedia. 2019, MM'19, p. 890–898.

[3] Linyao Gao, Tingyu Fan, Jianqiang Wan, et al., "Point cloud geometry compression via neural graph sampling," in 2021 IEEE International Conference on Image Processing (ICIP), 2021, pp. 3373–3377.

Quantitative Performance

Category	Ours vs Yan's [8]		Ours vs I	Huang's $[9]$	Ours vs Gao's $[10]$	
	D1	D2	D1	D2	D1	D2
Airplane	-51.30%	-55.53%	-44.15%	-41.60%	-41.23%	-35.85%
Car	-56.21%	-54.94%	-46.90%	-42.06%	-34.25%	-35.77%
Rifle	-50.25%	-56.50%	-41.66%	-36.92%	-37.00%	-47.72%
Table	-53.05%	-66.25%	-39.44%	-47.92%	-41.04%	-40.31%
Average	-57.40%	-58.38%	-42.51%	-39.70%	-40.61%	-37.21%

Quantitative results (BDBR) comparison with SOTA

Rate-distortion (RD) curves

Experimental results and Analysis

Computational Complexity

\mathbf{Method}	Yan's [8]	Huang's $[9]$	Gao's [10]	Ours
Running time (s)	0.091	0.252	0.166	0.243
Model size (MB)	68.45	43.27	38.02	32.16

Ablation Study

Baseline	DCAGC	Deconv	\mathbf{CR}	$L_{CD}s$	L_{LD}	Bpp	D1_PSNR	D2_PSNR
							(dB)	(dB)
\checkmark		\checkmark				0.1530	35.0410	39.5989
	\checkmark	\checkmark				0.1491	35.1956	39.7708
	\checkmark		\checkmark	\checkmark		0.1445	35.1793	39.8200
	\checkmark		\checkmark	\checkmark	\checkmark	0.1409	35.2086	39.8212

Baseline: without density constraint Deconv: Deconvolution L_{CD}s: multi-scale L_{CD}

Contributions

- We design a density-constrained adaptivegraph convolution (DCAGC) to efficiently represent point cloud local geometry.
- ➢ We propose a novel point-based point cloud compression method based on DCAGC.
- The proposed method outperforms the SOTA in terms of rate-distortion with average 47% D1 BD Bitrate (BDBR) and 45% D2 BDBR gain, and achieves more satisfactory reconstructions with clearer geometric details.

Future Works

- > More effective down-sampling methods to reduce complexity.
- Migrate to a large-scale point cloud (LiDAR etc.)

Thank you for your attention!

