Permutation coding using divide-andconquer strategy

Kun Tu* and Dariusz Puchala**

*School of Mathematical Sciences Yangzhou University Yangzhou, China **Institute of Information Technology Lodz University of Technology Lodz, Poland

Introduction

In computer science **permutations** are used in pattern searching, duplicate documents detection and data compression tasks.

For this reason, **redundancy reduction** leading to a concise representation of permutations is very important.

In this paper, we introduce a novel method for **succinct representation** of permutations where the average number of bits per element is **close to the theoretic limit**.

The theoretical limit

We consider *n*-element permutations $\pi(n)$ for *n* being **integer powers of 2**. Theoretical entropy limit can be calculated as (equal probabilities of $\pi(n)$):

 $H(n) = \frac{1}{n}\log_2(n!).$

And using Stirling's approximation formula we can write:

$$H(n) = \log_2 n - \log_2 \left(\frac{n}{\frac{n}{\sqrt{n!}}}\right) \approx \log_2 n - 1.443.$$

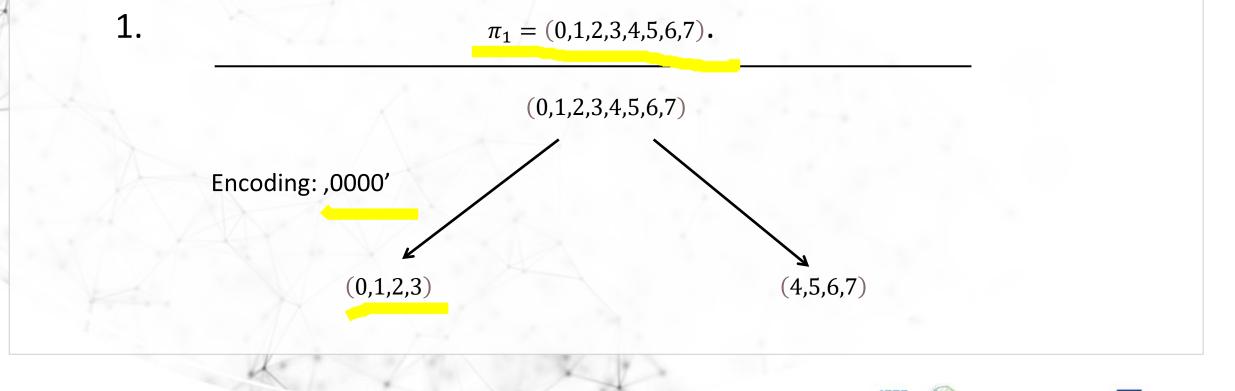
The proposed method is based on divide-and-conquer strategy.

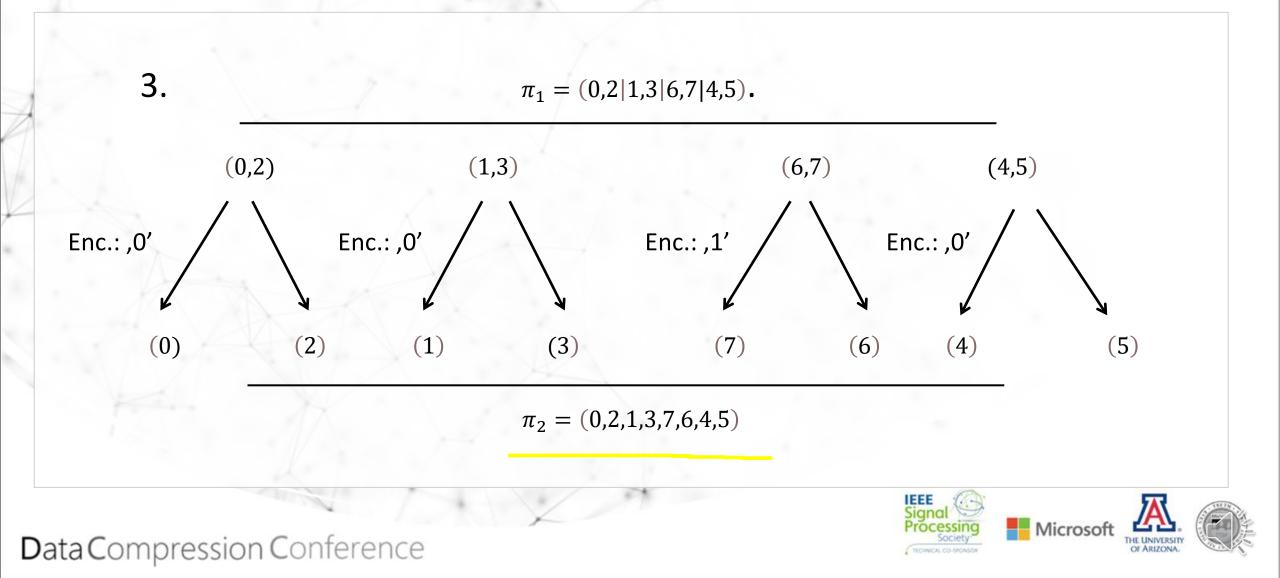
The outline of the method.

 The method follows the divide-and-conquer strategy and at each stage the currently considered permutation is divided into two equal halves (bins).
Binary encoding is used to describe elements-to-bins assignment ('0'-first, '1'-second bin).

3. Depending on a form of permutation some bits can be omitted, which leads to succinct representation.

For example, we have the following permutation $\pi_2 = (0,2,1,3,7,6,4,5)$ we want to encode.





Hence, the following permutation $\pi_2 = (0,2,1,3,7,6,4,5)$ can be encoded as the sequence of concatenated stage encodings.

We have than: $c_2 = 0000010110010$. This gives a numer of 13 bits. The numer of bits can change depending on permutation.

This encoding is unique.

The following encodings can be **concatenated** and written as a stream of bits/bytes.

IEEE Signal Processing Society Tronkou co-recessor

The bounds and average number of bits

For the proposed method the minimum number of bits equals:

$$G^{min}(n) = \frac{1}{2}\log_2 n \,.$$

The maximum number of bits equals:

$$G^{max}(n) = \log_2 n - \left(1 - \frac{1}{n}\right).$$

The average number of bits (with $n \rightarrow \infty$):

$$G(n) = \log_2 n - \left(\sum_{i=0}^{\log_2 n-1} \frac{1}{2^i + 1}\right) < \log_2 n - 1.269.$$

Experimental results

Comparison of the theoretical H(n) limit with the efficiency of the proposed method G(n).

Table 1: The values of G(n) and H(n) calculated for different values of n.

n	2	4	8	16	32	64
G(n)	0.5	1.167	1.967	2.856	3.797	4.766
H(n)	0.5	1.146	1.912	2.766	3.677	4.625

Thank you for watching our video.

