Permutation coding using divide-andconquer strategy

Kun Tu* and Dariusz Puchala**

*School of Mathematical Sciences
Yangzhou University
Yangzhou, China
**Institute of Information Technology Lodz University of Technology

Lodz, Poland

Microsoft
䒨
THE UNIIERSITY
OF ARIZONA.

Introduction

In computer science permutations are used in pattern searching, duplicate documents detection and data compression tasks.

For this reason, redundancy reduction leading to a concise representation of permutations is very important.

In this paper, we introduce a novel method for succinct representation of permutations where the average number of bits per element is close to the theoretic limit.

The theoretical limit

We consider n-element permutations $\pi(n)$ for n being integer powers of 2. Theoretical entropy limit can be calculated as (equal probabilities of $\pi(n)$):

$$
H(n)=\frac{1}{n} \log _{2}(n!) .
$$

And using Stirling's approximation formula we can write:

$$
H(n)=\log _{2} n-\log _{2}\left(\frac{n}{\sqrt[n]{n!}}\right) \approx \log _{2} n-1.443
$$

The proposed method

The proposed method is based on divide-and-conquer strategy.
The outline of the method.

1. The method follows the divide-and-conquer strategy and at each stage the currently considered permutation is divided into two equal halves (bins).
2. Binary encoding is used to describe elements-to-bins assignment (' 0^{\prime}-first, '1'-second bin).
3. Depending on a form of permutation some bits can be omitted, which leads to succinct representation.

The proposed method

For example, we have the following permutation $\pi_{2}=(0,2,1,3,7,6,4,5)$ we want to encode.
1.

$$
\pi_{1}=(0,1,2,3,4,5,6,7)
$$

The proposed method

2.

$$
\pi_{1}=(0,1,2,3 \mid 4,5,6,7)
$$

The proposed method

Enc.: $0^{\prime} \pi_{1}$

The proposed method

Hence, the following permutation $\pi_{2}=(0,2,1,3,7,6,4,5)$ can be encoded as the sequence of concatenated stage encodings.

We have than: $c_{2}=0000010110010$. This gives a numer of 13 bits. The numer of bits can change depending on permutation.

This encoding is unique.

The following encodings can be concatenated and written as a stream of bits/bytes.

The bounds and average number of bits

For the proposed method the minimum number of bits equals:

$$
G^{\min }(n)=\frac{1}{2} \log _{2} n
$$

The maximum number of bits equals:

$$
G^{\max }(n)=\log _{2} n-\left(1-\frac{1}{n}\right)
$$

The average number of bits (with $n \rightarrow \infty$):

$$
G(n)=\log _{2} n-\left(\sum_{i=0}^{\log _{2} n-1} \frac{1}{2^{l}+1}\right)=\log _{2} n-1.269
$$

Experimental results

Comparison of the theoretical $H(n)$ limit with the efficiency of the proposed method $G(n)$.

Table 1: The values of $G(n)$ and $H(n)$ calculated for different values of n.

n	2	4	8	16	32	64
$G(n)$	0.5	1.167	1.967	2.856	3.797	4.766
$H(n)$	0.5	1.146	1.912	2.766	3.677	4.625

Thank you for watching our video.

