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Introduction
Motivation

Direction-of-Arrival (DoA) Estimation
Objective: Determine directions of multiple superimposed signals in the
presence of noise from signals at sensor arrays.
Closely related to fundamental problems: harmonic retrieval, frequency
estimation, and time-delay estimation.
Numerous classical and recent applications:

Radar, sonar (source localization, military, automotive).
Communications (directed transmission, satellite communication).
Radio Astronomy (high resolution imaging).
Medical Imaging (ultrasound, tomography).
Geophysical Exploration (seismic, oil exploration).
Biomedical (hearing aids, heart rate monitoring).

More recent applications:
Drone localization at airports and public buildings.
Parametric channel estimation and user localization in Massive MIMO.
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Introduction
Motivation

Direction-of-Arrival (DoA) Estimation
A mature topic with long history of development.

Patent by Stone Stone in 1902 for RF-based
direction finding using a two element ar-
ray with less than half wavelength [Stone’1902],
[Stone’1906-2].
Later improved upon by De Forest [de Forest’1904], Marconi [Marconi’1906], Bellini
and Tosi [Bellini’1909], [Bellini’1910], and Adcock [Adcock’1919].
See [Schantz’11] for an overview on the origin of RF-based direction finding
Trend toward digital processing in the 60s by [Capon’66], [Capon’67]
Development of “super resolution” algorithms since the late 70s, including
[Schmidt’79],
[Schmidt’81],[Bienvenu’79],[Barabell’83],[Böhme’84],[Ziskind’88],[Stoica’89],[Böhme’86],[Viberg’91],[Stoica’90].

In this tutorial, we revisit several aspects in the last four decades of
“super-resolution” DoA estimation from a unified perspective.
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Introduction
DoA Estimation Setup

Arbitrary array with M sensors
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Introduction
DoA Estimation Setup

Arbitrary array with M sensors
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Introduction
DoA Estimation Problem

Arbitrary array with M sensors
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Introduction
DoA Estimation Problem

Multiple Classes of DoA Estimators:
Maximum Likelihood Estimators,
Spectral-based methods,
Search-free methods,
. . .

Goal of this Tutorial: Insight into Conventional and Modern DoA
Estimators from the Perspective of Optimization Techniques
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Introduction
Maximum Likelihood Estimators
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Introduction
Conventional Spectral-based Methods
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Motivation
Tutorial Overview

The tutorial addresses both,
experienced researchers in sensor array processing, as well as,
newcomers to the field.

We approach classical and novel DoA estimation methods from a modern
optimization (problem approximation/relaxation) perspective.

We highlight, how problem approximation and relaxation have always
played an important role in developing efficient algorithms:

sometimes explicitly in the design ...
... often implicitly, as the consequence of proposed (ad-hoc) algorithms.

We show novel derivations for existing algorithms that explicitly highlight
the use of relaxation of prior knowledge ...

... and introduce a framework for designing novel algorithms under
partial relaxation.
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Conventional Signal Model
Assumptions and Signal Model

Sensor array composed of M sensors.
N sources in the far-field of the array. (distance� 2×(diameter of array)2

wavelength )
N plane wave narrow-band signals impinge on array.
We assume that the number of sensors M exceeds the number of source
signals N, hence M > N.

Arbitrary array with M sensors

Source 1 Source N. . .

θ1

θN
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Conventional Signal Model
Assumptions and Signal Model

Narrowband condition:
The relative bandwidth of the signals is small.

relative bandwidth =
signal bandwidth
carrier frequency �

1
πM

The maximal traveling time τmax across the array is substantially smaller
than the effective correlation time of signal waveforms.

s(t)
τ

s(t+   )τ s(t)
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Conventional Signal Model
Assumptions and Signal Model

Array measurement (snapshot) at time instant t
x(t) = A(θ)s(t) + n(t)

θ = [θ1, . . . , θN]
T: DOAs of N source signals.

W.l.o.g. we consider only azimuth angle estimation θ ∈ Θ = [0,180◦).
A(θ) = [a(θ1), ...,a(θN)] ∈ CM×N: Steering matrix.
a(θ): Steering vector from the direction θ.

Dependent on the geometry of the sensor array and the direction θ.
Example: Uniform Linear Array (ULA) with baseline d:

a(θ) = [1, e−j 2π
λ

d cos(θ), . . . , e−j 2π
λ

(M−1)d cos(θ)]T.

Array manifold
AN =

{
A ∈ CM×N| A = [a(ϑ1), . . . ,a(ϑN)] with 0 ≤ ϑ1 < . . . < ϑN < 180◦}
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Conventional Signal Model
Assumptions and Signal Model

Array measurement (snapshot) at time instant t
x(t) = A(θ)s(t) + n(t)

x(t) = [x1(t), . . . , xM(t)]T ∈ CM×1 : Receive signal vector of the M sensors.
s(t) = [s1(t), . . . , sN(t)]T ∈ CN×1 : Source signal vector of the N sources.
n(t) = [n1(t), . . . ,nM(t)]T ∈ CM×1: Sensor noise vector of the M sensors.

Arbitrary array with M sensors

Source 1 Source N. . .

θ1

θN
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Conventional Signal Model
Assumptions and Signal Model

Sensor noise n(t) modeled as complex circular Gaussian random variable n(t),
with:

Identical noise variance (power) ν in all sensors (uniform).
Independent noise in different antennas (spatially white).
Independent noise in different time instants (temporally white).

Uniform spatially and temporally white noise
Zero mean: E {n(t)} = 0M.
Covariance matrix: E

{
n(t)nH(t)} = ν IM ∈ CM×M.
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Conventional Signal Model
Assumptions and Signal Model

Multiple measurement version: T snapshots
X = A(θ)S + N

X = [x(1), x(2), ..., x(T)] ∈ CM×T : Receive signal matrix.
S = [s(1), s(2), ..., s(T)] ∈ CN×T : Source signal matrix.
N = [n(1),n(2), ...,n(T)] ∈ CM×T: Sensor noise matrix.
T : Number of available snapshots.

Objective:
Given the receive signal X and the mapping θ 7→ A(θ), estimate the DOAs θ
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Conventional Signal Model
Stochastic and Deterministic Covariance Model

Signal waveform s(t) modeled as complex circular Gaussian random variable
s(t).

Stochastic (unconditional) signal model
Zero mean: E {s(t)} = 0N.
Signal covariance matrix: P = E

{
s(t)sH(t)} ∈ CN×N.

Non-singularity: P � 0 (not fully coherent signals).
Gaussian measurements: x(t) ∼ NC

(
0M,R

).
Receive correlation matrix: R = E

{
x(t)xH(t)}.

= A(θ)PAH(θ) + νIM ∈ CM×M.
Parameter characterization: θ ∈ ΘN,P ∈ CN×N, ν ∈ R+.

Number of parameters independent of number of observations T.
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Conventional Signal Model
Stochastic and Deterministic Covariance Model

Signal waveform s(t) modeled as deterministic quantity.
Received signal x(t) modeled as random variable x(t) = A(θ)s(t) + n(t).

Deterministic (conditional) signal model
Gaussian measurements: x(t) ∼ NC

(
A(θ)s(t), νI).

Parameter characterization: θ ∈ ΘN,
S = [s(1), s(2), ..., s(T)] ∈ CN×T, ν ∈ R+.

Number of parameters grows with number of observations T.
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Conventional Signal Model
Stochastic and Deterministic Covariance Model

In practice, the true receive signal covariance matrix R is not available
and must be estimated from finite samples.
A commonly used sample covariance/correlation matrix estimator is
given as:

Sample covariance/correlation matrix

R̂ =
1
T

T∑
t=1

x(t)xH(t) =
1
TXX

H
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Optimal Parametric Methods
Maximum Likelihood

General procedure [Lehmann’98]

Step 1: Determine analytically a multivariate pdf f(x(1), . . . , x(T)|α
) as a

function of random observation model vectors and nonrandom parameters
α.
Step 2: Insert actual observations x(1), . . . , x(T) instead of “hypothetical”
observation model vectors (random variables) x(1), . . . , x(T) to obtain the
so-called likelihood function f(x(1), . . . , x(T)|α

) from the pdf.
Step 3: Maximize the likelihood function w.r.t. all unknown parameters
and to ML parameter estimates, i.e.

α̂ML = arg max
α

f(x(1), . . . , x(T)|α
)

Why is Maximum Likelihood important?
Maximum Likelihood achieves the Cramér-Rao lower-bound
(under mild regularity conditions).
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Optimal Parametric Methods
Maximum Likelihood

Concentration of ML function
Use a specific partition α = [αT

1,α
T
2]T of the parameter vector.

Maximize the likelihood function w.r.t. part of the variables, e.g., the
partition α2, while considering other variables as constant. Hence,

max
α

f(x(1), . . . , x(T)|α
)

= max
α1

max
α2

f(x(1), . . . , x(T)|α1,α2
)

︸ ︷︷ ︸
g
(
x(1),...,x(T)|α1

)
If possible, find an analytic (closed-form) solution α̂2,ML(α1) (as a function
of α1) for inner optimization problem

g(x(1), . . . , x(T)|α1
)

= f(x(1), . . . , x(T)|α1, α̂2,ML(α1)
)
,

α̂1,ML = arg max
α1

g(x(1), . . . , x(T)|α1
)
.
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Optimal Parametric Methods
Deterministic Maximum Likelihood

Under the deterministic (unconditional) model [Böhme’84],[Wax’85],[Ziskind’88]

x(t) ∼ NC
(
A(θ)s(t), νI)

with parameter vector α = [θT, sT(1), . . . , sT(T), ν]T.
Hence the corresponding likelihood is

f(x(1), . . . , x(T)|α
)

=

T∏
t=1

1
(πν)M

exp

(
−‖x(t)− A(θ)s(t)‖2

ν

)
.

The negative log-likelihood is

L
(
x(1), . . . , x(T)|α

)
=

T∑
t=1

M ln(πν) +

T∑
t=1

1
ν
‖x(t)− A(θ)s(t)‖2.
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Optimal Parametric Methods
Deterministic Maximum Likelihood

Closed-form expressions for ML estimates for fixed θ

ŝDML(t) =
(
AH(θ)A(θ)

)−1AH(θ)x(t) = A†(θ)x(t)

ν̂DML =
1
MTr

(
Π⊥A(θ)R̂

)
and where

A†(θ) =
(
AH(θ)A(θ)

)−1AH(θ)

ΠA(θ) = A(θ)A†(θ)

and Π⊥A(θ) = I −ΠA(θ)

denote the pseudo-inverse of A(θ), projectors onto the range space of A(θ)
and onto the nullspace of AH(θ), respectively.
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Optimal Parametric Methods
Deterministic Maximum Likelihood

Inserting ŝDML(t) and ν̂DML back into the negative log-likelihood

L
(
x(1), . . . , x(T)|θ) = TM

(
ln
(
Tr(Π⊥A(θ)R̂

))
+ ln(π)− ln(M) + 1

)
.

Minimization w.r.t. θ: [Böhme’84]

θ̂DML = arg min
θ
L
(
x(1), . . . , x(T)|θ

)
= arg min

θ
Tr(Π⊥A(θ)R̂

)
Interpretation: Find DoAs such that the total received energy in the noise

subspace is minimized.
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Optimal Parametric Methods
Deterministic Maximum Likelihood

Minimization of the concentrated negative log-likelihood function

fDML(θ) = Tr(Π⊥A(θ)R̂
)

fDML(θ) is highly multi-modal, many local optima with cost close to global
optimum.
Minimum cannot be computed in closed form.
Costly N dimensional search over field of view is required.
Complexity grows exponentially with number of sources N.
Generally, complexity becomes prohibitive if N > 3 sources.
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Optimal Parametric Methods
Deterministic Maximum Likelihood
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Optimal Parametric Methods
Stochastic Maximum Likelihood

Under the stochastic (unconditional) model
[Böhme’86],[Bresler’88],[Jaffer’88],[Stoica’90-2]

x(t) ∼ NC
(
0M,R

)
with R = E x(t)xH(t) = A(θ)PAH(θ) + νIM and parameter vector
α = [θT,pT, ν]T.

Vector p ∈ RN2 contains the N elements on diagonal of matrix P and the
(N2 − N) elements characterizing real and imaginary part of upper triangular
of P.
Hence the corresponding likelihood is

f(x(1), . . . , x(T)|α
)

=

T∏
t=1

1
πM det(R)

exp
(
−xH(t)R−1(θ)x(t)) .
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Optimal Parametric Methods
Stochastic Maximum Likelihood

The negative log-likelihood is

L
(
x(1), . . . , x(T)|α

)
= T

(
M ln(π) + ln det

(
R
)

+ Tr(R−1R̂)
)

Closed-form expressions for ML estimates for fixed θ

ν̂SML =
1

M − NTr
(
Π⊥A(θ)R̂

)
P̂SML = A†(θ)

(
R̂− ν̂SMLIM

)
A†H(θ)

Inserting ν̂SML and P̂SML back and minimizing w.r.t. θ yields

θ̂SML = arg min
θ

det
(
ΠA(θ)R̂ΠA(θ) +

1
M − NTr (Π⊥A(θ)R̂

)
︸ ︷︷ ︸

ν̂SML

Π⊥A(θ)

)
.
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Optimal Parametric Methods
Weighted Subspace Fitting

Eigendecomposition of the receive covariance matrix
R = E x(t)xH(t) = A(θ)PAH(θ) + νIM

=

M∑
m=1

λmumuH
m

where λ1 ≥ λ2 . . . ≥ λM ∈ R+ are sorted eigenvalues of R.
From the eigenanalysis of R we obtain that:

λm > ν, m = 1, . . . ,N signal subspace eigenvalues
λm = ν, m = N + 1, . . . ,M noise subspace eigenvalues

with corresponding eigenvectors:
u1, . . . , uN, signal eigenvectors

uN+1, . . . , uM noise eigenvectors.
January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 36



Optimal Parametric Methods
Weighted Subspace Fitting

Eigendecomposition in compact matrix notation:
R = UΛUH = UsΛsUH

s + UnΛnUH
n

where we define
Us = [u1, . . . ,uN] ∈ CM×N signal eigenvector matrix
Un = [uN+1, . . . ,uM] ∈ CM×(M−N) noise eigenvector matrix
Λs = diag(λ1, . . . , λN) ∈ SN×N+ diagonal matrix of signal eigenvalues
Λn = ν IM−N ∈ S(M−N)×(M−N)

+ diagonal matrix of noise eigenvalues
and
U = [Us,Un] ∈ CM×M unitary matrix of eigenvectors
Λ = blkdiag (Λs,Λn) ∈ SM×M+ diagonal matrix of eigenvalues.
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Optimal Parametric Methods
Weighted Subspace Fitting

U is unitary, i.e. UHU = IM.
The columns of the signal subspace eigenvectors Us span the signal
subspace, i.e., the range space spanned by the columns of the steering
matrix A(θ) at the true DOAs θ, hence

R(Us) = R(A(θ)).

There exists a non-singular matrix K ∈ CN×N such that Us = A(θ)K.
The columns of the noise subspace eigenvectors Un span the noise-space,
i.e., the null-space of the Hermitian of the true steering matrix A(θ)

R(Un) = N (AH(θ)).

Hence, the columns of the noise subspace eigenvectors Un are orthogonal
to the column-space of the true steering matrix A(θ), i.e.,

UH
nA(θ) = 0(M−N)×N.
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Optimal Parametric Methods
Weighted Subspace Fitting

The eigendecomposition of the finite sample covariance matrix R̂ is given by:
R̂ = ÛΛ̂Û

H
= ÛsΛ̂sÛ

H
s + ÛnΛnÛ

H
n

where we define for λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂M
Ûs = [û1, . . . , ûN] ∈ CM×N sample signal eigenvector matrix
Ûn = [ûN+1, . . . , ûM] ∈ CM×(M−N) sample noise eigenvector matrix
Λ̂s = diag(λ̂1, . . . , λ̂N) ∈ SN×N+ sample signal eigenvalues
Λ̂n = diag(λ̂N+1, . . . , λ̂M) ∈ S(M−N)×(M−N)

+ sample noise eigenvalues
and
Û =

[
Ûs, Ûn

]
∈ CM×M unitary matrix of eigenvectors

Λ̂ = blkdiag
(
Λ̂s, Λ̂n

)
∈ SM×M+ diagonal matrix of eigenvalues.
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Optimal Parametric Methods
Weighted Subspace Fitting

The DML cost function

fDML(θ) = Tr(Π⊥A(θ)R̂
)

is equivalently obtained from minimizing the Least-Squares fitting problem
w.r.t. to the fitting matrix S:

fLS(θ, S) = ‖X − A(θ)S‖2F.

The minimization yields the LS estimate

ŜLS =
(
AH(θ)A(θ)

)−1AH(θ)X = A†(θ)X

which, if substituted back in the LS function yields the DML function above.
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Optimal Parametric Methods
Weighted Subspace Fitting

The LS fitting problem can be generalized. A general data matrix M (as some
transformation of the data X) can be used instead of X.
Examples are M = Ûs and M = ÛsΛ̂

1
2
s or most generally

M = ÛsW
1
2

for arbitrary weighting matrix W.
The corresponding weighted subspace fitting (WSF) problem becomes
[Viberg’91],[Ottersten’90],[Stoica’90]

fWSF(θ, F) = ‖M − A(θ)F‖2F

or after concentration w.r.t. F with F̂WSF = A†(θ)M

fWSF(θ) = Tr(Π⊥A(θ)ÛsWÛ
H
s
)
.

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 41



Optimal Parametric Methods
Weighted Subspace Fitting

The WSF estimates for the DOAs θ are obtained as
θ̂WSF = arg min

θ
Tr(Π⊥A(θ)ÛsWÛ

H
s
)
.

The minimization of the WSF cost function cannot be carried out in
closed-form and generally requires multi-dimensional search.
Similarly to the multi-dimensional ML methods, the complexity
associated with the minimization becomes prohibitive if the number of
source N > 3.
The choice of the weighting matrix as

Wao =
(
Λ̂s − ν̂wIN

)2
Λ̂
−1
s for ν̂w =

1
M − NTr(Λ̂n

)
is asymptotically (for large T) optimal in terms of the
Mean-Squared-Error (MSE) of DOA estimates which achieves the CRB
under the stochastic model.
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Optimal Parametric Methods
Covariance Matching Estimation Techniques

Recall the Covariance Matrix R

R = A(θ)PAH(θ) + νI

Formulation of Covariance Matching Estimation Techniques (COMET)
[Ottersten’98]

ÂCOMET = arg min
A(θ)∈AN

min
P�0,ν≥0

∣∣∣∣∣∣W vec
(
R̂− A(θ)PAH(θ)− νI

)∣∣∣∣∣∣2
F

where W ∈ CM2×M2 is a proper weighting matrix, e.g., W = I.
Asymptotically Optimal Weighting Matrix
The MSE of COMET is asymptotically equal to the Stochastic Cramér-Rao
bound if the weighting matrix W is chosen as

W = Ŵasymp =
(
R̂

T
⊗ R̂

)−1/2
.
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Optimal Parametric Methods
Covariance Matching Estimation Techniques

Observation
vec (R) = vec

(
A(θ)PAH(θ) + νI

)
= Φ(θ)γ

Φ ∈ CM2×(N2+1) is full-rank matrix depending on the steering matrix A(θ).
γ ∈ R(N2+1)×1 contains the noise power ν and real-valued entries which
characterize the elements on the source covariance matrix P.

Relaxed Formulation of COMET
θ̂COMET = arg min

θ∈ΘN
min

γ∈C(N2+1)×1

∣∣∣∣∣∣W vec
(
R̂
)
−WΦ (θ)γ

∣∣∣∣∣∣2
F

= arg min
θ∈ΘN

vec
(
R̂
)H

WH Π⊥WΦ(θ) Wvec
(
R̂
)
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Optimal Parametric Methods
Simulation Results

Uncorrelated Source Signals
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Optimal Parametric Methods
Simulation Results

Correlated Source Signals
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Approximation/Relaxation Concept
Motivation

General Formulation of Parametric DOA Estimation

A
(
θ̂
)

= arg min
A(θ)∈AN

f (A (θ))

Different choices on the cost function f(·) leads to different estimators.
Prohibitively expensive computational cost to obtain the global minimum.

Adoption of Approximation/Relaxation Techniques required!
Relaxation/Restriction of the feasible set
Successive approximation of the cost function
. . .
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Approximation/Relaxation Concept
Motivation

Potential Approaches

Original Problem
Â = min

A∈AN
f(A)

Relaxation
Ârelaxed = min

A∈ĀN⊃AN
f(A)

Approximation
Âapprox = min

A∈AN
f̄(A)

Back-projection is generally required after the relaxation step.
Possible combination of both relaxation and approximation.
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Approximation/Relaxation Concept
Approximation

αα̂(k)

original function f(α)

α̂(k+1)

approx. function f̄(α; α̂(k))
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Approximation/Relaxation Concept
Relaxation

Surface of equal cost f(A)

Manifold AN (nonconvex set)
Set ĀN (convex relaxation)
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Approximation/Relaxation Concept
Relaxation

Concept of Relaxation-and-Projection Method
1. Replace the original array manifold AN by a relaxed manifold ĀN ⊃ AN

Â = arg min
A∈AN

f (A) −−→ Ârelaxed = arg min
A∈ĀN

f (A) .

2. Project the relaxed estimate Ârelaxed back to the original array manifold AN.

Remarks
The choice on the relaxed array manifold ĀN generally depends on the
underlying structure of the sensor array.
Relaxation-and-Projection may, in particular cases, preserve optimality, e.g.,
in the Extended Invariance Principle (EXIP) [Stoica’89-2].
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Single-source Approximation Techniques
Concept

Suboptimal solutions of the DOA estimation problem can be obtained by
adopting the Single-source Approximation.
Recall the General DOA Estimation Problem

A
(
θ̂
)

= arg min
A
(
θ
)
∈AN

f (A (θ))

Single-source Approximation
Spectral sweep to find the N deepest local minima θ̂ =

[
θ̂1, . . . , θ̂N

]T
of f(a (θ)

)
A
(
θ̂
)

= Narg min
a(θ)∈A1

f(a(θ)
)
.

Interpretation: The cost function measures the goodness-of-fit under the
assumption of only one source signal located at the candidate DOA θ ∈ Θ.
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Single-source Approximation Techniques
Concept

Arbitrary array with M sensors

Source 1 Source N. . .

θ1

θN

Collection of array responses
on the sampled field-of-view

Measured
signal

Steering
matrix

Source
signal

=

×
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Single-source Approximation Techniques
Concept

Field-of-View
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Single-source Approximation Techniques
Conventional Beamformer

Original Derivation
Output power of the receive signal x(t) after spatial filtering with the
beamforming vector w(θ)

P(θ) = E
{∣∣wH(θ)x(t)

∣∣2}
= wH(θ)Rw(θ).

In practice, the true covariance matrix R of the receive signal x(t) is not
available and therefore replaced by the sample covariance matrix R̂

P̂(θ) =
1
T

T∑
t=1

∣∣wH(θ)x(t)
∣∣2

= wH(θ)R̂w(θ).
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Single-source Approximation Techniques
Conventional Beamformer

Beamformer Vector

wCBF(θ) =
a(θ)

||a(θ)||

Conventional Beamforming Estimator [Bartlett’48]
Find the N highest local maxima of the beamformer spectrum

P̂CBF(θ) =
aH(θ)R̂a(θ)

||a(θ)||2
.

Interpretation
wCBF(θ) can be considered as a spatially matched filter that maximizes the
power impinging on the sensor array from the direction θ.
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Single-source Approximation Techniques
Conventional Beamformer

Alternative Derivation: Starting from the Covariance Matrix R

R = APAH + νI

Single-source approximation of Covariance Fitting Problem

σ̂2s = arg min
σ2
s

∣∣∣∣∣∣R̂− σ2s aaH
∣∣∣∣∣∣2
F

=
aHR̂a

(aHa)
2

Conventional beamformer spectrum measures the power impinging at the
sensor array from the direction a = a(θ).
Disadvantage: limited angular resolution.
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Single-source Approximation Techniques
Capon Beamformer

Design of the Capon beamformer
For each direction a = a(θ), find the beamformer vector w = w(θ) such that

the power from the direction a is maintained
the power from remaining directions is suppressed as much as possible.

Optimization Problem
min
w

wHR̂w

subject to wHa = 1

Also known as Minimum Variance Distortionless Response beamformer.

Optimal beamformer vector wCapon =
R̂
−1

a

aHR̂
−1

a
.
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Single-source Approximation Techniques
Capon Beamformer

Capon spectrum [Capon’66]

P̂Capon(θ) = wH
Capon(θ)R̂wCapon(θ)

=
1

aH(θ)R̂
−1

a(θ)

Estimate the DOAs θ̂ from the N highest peaks of P̂Capon(θ).
Higher resolution capability than the conventional beamformer.
Applicable if the sample covariance matrix R̂ is full rank.
Values of Capon peaks are roughly proportional to the signal power of the
sources.
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Single-source Approximation Techniques
Capon Beamformer

Recall the Conventional Beamfomer

σ̂2s = arg min
σ2
s

∣∣∣∣∣∣R̂− σ2s aaH
∣∣∣∣∣∣2
F

Alternative Formulation of the Capon Spectrum

σ̂2s = arg min
σ2
s

∣∣∣∣∣∣R̂− σ2s aaH
∣∣∣∣∣∣2
F

subject to R̂− σ2s aaH � 0

Remarks
Both formulations are based on covariance fitting criteria under
single-source approximation.
Constraint in the Capon formulation prevents the residual matrix to be
indefinite.
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Single-source Approximation Techniques
MUSIC

Recall the Eigendecomposition of the Covariance Matrix R

R = APAH + νI = UsΛsUH
s + νUnUH

n

Assumption: Non-coherent source signals.
Key observation: UH

na(θ) = 0 iff θ coincides with one of the true DOAs θ.

MUSIC Pseudo-spectrum [Schmidt’79]

P̂MUSIC(θ) =
1∣∣∣∣∣∣ÛH

na(θ)
∣∣∣∣∣∣2
2

=
1

aH(θ)ÛnÛ
H
na(θ)

MUSIC pseudo-spectrum is inversely proportional to the distance between
the steering vector a(θ) and the sample noise subspace span(Un).
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Single-source Approximation Techniques
MUSIC

Recall the WSF Estimator [Viberg’91]

Â = arg min
A∈AN

min
F

∣∣∣∣∣∣Ûs − AF
∣∣∣∣∣∣2
F

MUSIC Null-spectrum
fMUSIC(θ) = aH(θ)ÛnÛ

H
na(θ)

Alternative Interpretation

fMUSIC(θ) ∝ min
f

∣∣∣∣∣∣Ûs − a(θ)fT
∣∣∣∣∣∣2
F

MUSIC can be considered as a single-source approximation of WSF with
identity weighting.
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Partial Relaxation Techniques
General Concept

Formulation of the Multi-dimensional Search{
Â
}

= arg min
A∈AN

f (A)

Relaxed Array Manifold
ĀN =

{
A ∈ CM×N ∣∣ A =

[
a(θ),B

]
,B ∈ CM×(N−1) and rank (A) = N

}

A ∈ AN A ∈ ĀN

Partial Relaxation
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Partial Relaxation Techniques
General Concept

Formulation of the Multi-dimensional Search{
Â
}

= arg min
A∈AN

f (A)

Relaxed Array Manifold
ĀN =

{
A ∈ CM×N ∣∣ A =

[
a(θ),B

]
,B ∈ CM×(N−1) and rank (A) = N

}
Formulation of Partial Relaxation (PR) Framework [Trinh-Hoang’18]

{âPR} = N arg min
a∈A1

min
B∈CM×(N−1)

f ([a,B])
Compute the null-spectrum fPR(θ) = min

B∈CM×(N−1)
f ([a(θ),B

]).
N-deepest local minimizers of fPR(θ) are the DOA estimates.
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Partial Relaxation Techniques
General Concept

θ

min
B∈CM×(N−1)

f ([a(θ),B
])

[
a(θ),B

]

[
a(θ),B

][
a(θ),B

][
a(θ),B

][
a(θ),B

][
a(θ),B

][
a(θ),B

][
a(θ),B

] [
a(θ),B

]

θ̂1 θ̂2 θ̂3 θ̂4

Relax the manifold structure of the signals from “interfering” directions.
Generally lower complexity than multi-dimensional search.
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Partial Relaxation Techniques
PR Deterministic Maximum Likelihood

Recall the DML estimator{
ÂDML

}
= arg min

A∈AN
Tr
(
Π⊥A R̂

)
Partially-relaxed (PR) Formulation

{âPR-DML} = N arg min
a∈A1

min
B∈CM×(N−1)

Tr
(
Π⊥[a,B]R̂

)
= N arg min

a∈A1
min

B∈CM×(N−1)
Tr
(
Π⊥a R̂

)
− Tr

(
ΠΠ⊥a BR̂

)
Null-spectrum of the PR-DML Estimator with a = a(θ)

fPR-DML(θ) = Tr
(
Π⊥a R̂

)
− max

B∈CM×(N−1)
Tr
(
ΠΠ⊥a BR̂

)
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Partial Relaxation Techniques
PR Deterministic Maximum Likelihood

New Optimization Problem
max

B∈CM×(N−1)
Tr
(
ΠΠ⊥a BR̂

)
Eigenvalue Decomposition of ΠΠ⊥a B

ΠΠ⊥a B = ZZH with Z ∈ CM×K

rank
(
ΠΠ⊥a B

)
= K ≤ N − 1 ZHa = 0

Equivalent Reformulation
max

Z∈CM×K
Tr
(
ZHΠ⊥a R̂Π

⊥
a Z
)

=

N−1∑
k=1

λk(Π
⊥
a R̂Π

⊥
a ) =

N−1∑
k=1

λk(Π
⊥
a R̂)

subject to ZHa = 0
subject to ZHZ = I
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Partial Relaxation Techniques
PR Deterministic Maximum Likelihood

Null-spectrum of the PR-DML Estimator
fPR-DML(θ) = Tr

(
Π⊥a(θ)R̂

)
− max

B∈CM×(N−1)
Tr
(
ΠΠ⊥a(θ)B

R̂
)

=

M∑
k=N

λk(Π
⊥
a(θ)R̂)

=

M∑
k=N

λk

(
R̂− 1
||a(θ)||2

R̂
1/2

a(θ)aH(θ)R̂
1/2
)

Remarks
Multiple minimizers for B.
Closed-form expressions for the null-spectrum.
(M − N + 1)- smallest eigenvalues are required.
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Partial Relaxation Techniques
PR Deterministic Maximum Likelihood

Alternative Derivation of Null-spectrum of PR-DML
fPR-DML(θ) = min

B∈CM×(N−1)
Tr
(
Π⊥[a(θ),B]R̂

)
= min

B∈CM×(N−1)
min

s∈CT×1,H∈C(N−1)×T

1
T
∣∣∣∣X − a(θ)sT − BH

∣∣∣∣2
F

Substitute E = BH and Concentrate with Respect to s

fPR-DML(θ) = min
rank(E)≤N−1

1
T
∣∣∣∣∣∣Π⊥a(θ)X −Π⊥a(θ)E

∣∣∣∣∣∣2
F

=
1
T

M∑
k=N

σ2k
(
Π⊥a(θ)X

)

=

M∑
k=N

λk
(
Π⊥a(θ)R̂

)
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Partial Relaxation Techniques
PR Weighted Subspace Fitting

Recall the WSF estimator{
ÂWSF

}
= arg min

A∈AN
Tr
(
Π⊥A ÛsWÛ

H
s
)

Partially-relaxed (PR) Formulation
{âPR-WSF} = N arg min

a∈A1
min

B∈CM×(N−1)
Tr
(
Π⊥[a,B]ÛsWÛ

H
s
)

Null-spectrum of the PR-WSF Estimator
fPR-WSF(θ) = λN

(
Π⊥a(θ)ÛsWÛ

H
s
)

Only one eigenvalue required.
PR-WSF with W = I is equivalent to MUSIC estimator.
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Partial Relaxation Techniques
PR Constrained Covariance Fitting

Recall the Covariance Matrix R

R = APAH + νI

=
[
a B

] [σ2s ρH

ρ Q

] [
aH

BH

]
+ νI

Formulation of PR-Constrained Covariance Fitting (PR-CCF)

{âPR-CCF} = N arg min
a∈A1

min
B,σ2

s≥0,Q�0

∣∣∣∣∣∣R̂− σ2s aaH − BQBH
∣∣∣∣∣∣2
F

subject to R̂− σ2s aaH − BQBH � 0

Neglect the correlation between source signals.
Replace the noise component with the positive-semidefinite constraint.
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Partial Relaxation Techniques
PR Constrained Covariance Fitting

Equivalent formulation of the inner optimization

min
σ2
s≥0

M∑
k=N

λ2k
(
R̂− σ2s aaH

)
subject to R̂− σ2s aaH � 0

Closed-form solution for the minimizer σ̂2s, C
σ̂2s, C =

1
aHR̂

−1
a

Null-spectrum of the PR-CCF Estimator

fPR-CCF(θ) =

M∑
k=N

λ2k

(
R̂− 1

aH(θ)R̂
−1

a(θ)
a(θ)aH(θ)

)
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Partial Relaxation Techniques
PR Unconstrained Covariance Fitting

Formulation of PR-Unconstrained Covariance Fitting (PR-UCF)
{âPR-UCF} = N arg min

a∈A1
min

B,σ2
s≥0,Q�0

∣∣∣∣∣∣R̂− σ2s aaH − BQBH
∣∣∣∣∣∣2
F

Null-spectrum of the PR-UCF Estimator with a = a(θ)

fPR-UCF(θ) = min
σ2s≥0

M∑
k=N

λ2k
(
R̂− σ2s aaH

)
No closed-form solution for the minimizer σ̂2s,U.
λ̄k(σ2s ) = λk

(
R̂− σ2s aaH

)
is continuously differentiable with respect to σ2s

dλ̄k
(
σ2s
)

dσ2s
= − 1

σ4s aH
(
R̂− λ̄k(σ2s )IM

)−2
a
.
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Partial Relaxation Techniques
PR Unconstrained Covariance Fitting

Define

g(σ2s ) =

M∑
k=N

λ2k
(
R̂− σ2s aaH

)

Objective: Find σ̂2s,U where the derivative g′(σ2s ) vanishes

g′(σ2s ) = −
M∑

k=N

2λ̄k(σ2s )

σ4s aH
(
R̂− λ̄k(σ2s )IM

)−2
a

If σ2s → 0 =⇒ g′(σ2s ) < 0
If σ2s →∞ =⇒ g(σ2s ) ≈ σ4s ||a||

4
2 =⇒ g′(σ2s ) > 0

Solution: Find an interval where g′(σ2s ) changes sign and perform bisection
search
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Partial Relaxation Techniques
PR Full Covariance Fitting

Formulation of PR-Full Covariance Fitting (PR-FCF)
{âPR-UCF} = N arg min

a∈A1
min

B,σ2
s≥0,Q�0,ν≥0

∣∣∣∣∣∣R̂− σ2s aaH − BQB− νI
∣∣∣∣∣∣2
F

Null-spectrum of the PR-FCF Estimator with a = a(θ)

fPR-FCF(θ) = min
σ2s≥0

M∑
k=N

λ2k
(
R̂− σ2s aaH

)
−

( M∑
k=N

λk
(
R̂− σ2s aaH

))2

M − N + 1

No closed-form solution for the minimizer σ̂2s, F.
Numerical suboptimal solution obtained from Newton’s method.
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Partial Relaxation Techniques
Insights and Relation

Methods Multi-dimensional
Search

Partial
Relaxation

Single-source
Approximation

Signal
Fitting DML PR-DML Conv. Beamformer

Subspace
Fitting WSF PR-WSF Weighted MUSIC

Covariance
Fitting Unweighted COMET

PR-CCF
PR-UCF
PR-FCF

Capon Beamformer
Conv. Beamformer

Degraded performance of PR methods in the case of correlated signals.
Null-spectra of PR methods require the computation of eigenvalues.
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Partial Relaxation Techniques
Insights and Relation

Explanation of Performance Degradation of PR Methods
Case study: Two fully coherent source signals without sensor noise

X = a(θ1)sT + a(θ2)sT

=
(
a(θ1) + a(θ2)

)
sT.

Null-spectrum of the PR-DML estimator for N = 2 source signals
fPR-DML(θ) = min

b∈CM×1
min

s∈CT×1,h∈CT×1

1
T
∣∣∣∣∣∣X − a(θ)sT − bhT

∣∣∣∣∣∣2
F

Cost function is non-negative.
Perfect match is achieved if b = a(θ1) + a(θ2) regardless of θ.
Flat null-spectrum for all look-direction θ =⇒ no reliable DOA estimation.
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Partial Relaxation Techniques
Efficient Implementation

Null-spectrum of the PR-DML Estimator

fPR-DML(θ) =
M∑

k=N
λk

(
R̂− 1
||a||2

R̂
1/2

aaHR̂
1/2
)

with a = a(θ)

Null-spectrum of the PR-CCF Estimator

fPR-CCF(θ) =
M∑

k=N
λ2k

(
R̂− 1

aHR̂
−1

a
aaH

)
with a = a(θ)

Dependent on eigenvalues but not on eigenvectors.
Similar structure of the matrix argument.

Core Numerical Problem: Efficient Computation of Eigenvalues

d̄k = λk
(
D− ρ̄zzH

) with ρ > 0

D = diag(d1, . . . , dK) ∈ RK×K with d1 > . . . > dK.
z = [z1, . . . , zK]

T ∈ CK×1 has no zero entry.
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Partial Relaxation Techniques
Efficient Implementation
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Partial Relaxation Techniques
Efficient Implementation
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Partial Relaxation Techniques
Efficient Implementation

Remarks
Corresponding to the routine dlaed4() in LAPACK [Anderson’99].
Applicable to PR estimators using orthogonal transformation.
Adaptive initialization using previous eigenvalues.
Reduction in execution time using alternative expressions.

Example: PR-DML Estimator

{âPR-DML} = N arg min
a∈A1

M∑
k=N

λk

(
R̂− 1
||a||2

R̂
1/2

aaHR̂
1/2
)

= N arg min
a∈A1

Tr
(
R̂
)
− aHR̂a

aHa
−

N−1∑
k=1

λk

(
Λ̂− 1

||a||22
Λ̂

1/2
Û

H
aaHÛΛ̂

1/2
)
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Partial Relaxation Techniques
Simulation Results

Uncorrelated Source Signals
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Partial Relaxation Techniques
Simulation Results

Uncorrelated Source Signals
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Relaxation Based on Geometry Exploitation
Shift-Invariant Array

Shift-Invariant Array
∆

∆
∆

∆

subarray steering
matrix A(θ)

subarray steering
matrix A(θ)

θ1θ2θ3

Figure: Antenna array composed of two identical subarrays (subarray 1 in red color)
and (subarray 2 in blue color) shifted by baseline ∆.
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ESPRIT

Shift-Invariant Array
∆

∆
∆

∆

subarray
manifold ASUB

N

subarray
manifold ASUB

N

θ1θ2θ3

Figure: The subarray displacement (shift) ∆ must be known. ASUB
N is the manifold of

each subarray.

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 88



Relaxation Based on Geometry Exploitation
ESPRIT

We assume M
2 ≥ N. Given the steering matrix A(θ) ∈ ASUB

N of the first subarray,
the steering matrix A(θ) ∈ ASUB

N of the second subarray can be expressed as

A(θ) = A(θ)D(θ), D(θ) = diag
(
e−j 2πλ ∆ cos(θ1), e−j 2πλ ∆ cos(θ2), · · · , e−j 2πλ ∆ cos(θN)

)
The array steering matrix can be decomposed in subarray responses as

A(θ) =

[
A(θ)
A(θ)

]
=

[
A(θ)

A(θ)D(θ)

]
Similarly, let Us be partitioned as

Us =

[
Us
Us

]
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Relaxation Based on Geometry Exploitation
ESPRIT

From an optimization perspective ESPRIT and TLS-ESPRIT can be understood
as a subspace matching approach with manifold relaxation.
We consider TLS-ESPRIT: Recall that A(θ) and Us span the same space and
consider the subspace fitting problem

fWSF(θ) = min
A(θ)∈AN

min
K∈CN×N

‖Ûs − A(θ)K‖2F

which involves a multi-dimensional multi-modal optimization over the
manifold AN:

AN =

{
A ∈ CM×N

∣∣∣ [ A(ϑ)
A(ϑ)D(ϑ)

]
,A(ϑ) ∈ ASUB

N ,ϑ ∈ ΩN
}
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ESPRIT

To make the problem tractable the original array manifold AN is replaced by
the relaxed manifold AESPRIT

N

AESPRIT
N =

{
A ∈ CM×N| A =

[
A
AD

]
, A ∈ C

M
2 ×N,D ∈ DN×N}

where A ∈ CM
2 ×N is an arbitrary complex matrix and D an arbitrary diagonal

matrix parameterized as

D(ϑ, r) = diag
(
r1e−j 2πλ ∆ cos(ϑ1), r2e−j 2πλ ∆ cos(ϑ2), · · · , rNe−j 2πλ ∆ cos(ϑN)

)
with r = [r1, r2, . . . , rN]T ∈ RN

+.
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ESPRIT

The subspace fitting problem over manifold AESPRIT
N can also be written as the

Total Least Squares (TLS) ESPRIT problem:

min
A∈AESPRIT

N
min

K∈CN×N

∥∥Ûs − A(θ)K
∥∥2
F

= min
D∈DN×N

min
K∈CN×N

min
A∈C(M/2)×N

(∥∥ [Ûs, Ûs
]
− A [K,DK]

∥∥2
F

)
= min

D∈DN×N
min

K∈CN×N
min

A∈C(M/2)×N

(∥∥ [Ûs, Ûs
]
−
[
Ŭs, Ŭs

] ∥∥2
F

)
subject to Ŭs = AK

Ŭs = ADK
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ESPRIT

If the source signals are not coherent, i.e., K is an invertible matrix, we can
rewrite the previous optimization problem as follows:

min
D∈DN×N

min
K∈CN×N

min[
Ŭs,Ŭs

]
∈CM

2 ×2N

(∥∥ [Ûs, Ûs
]
−
[
Ŭs, Ŭs

] ∥∥2
F

)
subject to Ŭs = ŬsK

−1DK

= min
D∈DN×N

min
K∈CN×N

min[
Ŭs,Ŭs

]
∈CM

2 ×2N

(∥∥ [Ûs, Ûs
]
−
[
Ŭs, Ŭs

] ∥∥2
F

)
subject to

[
Ŭs, Ŭs

] [ K−1DK
−IN

]
= 0M

2 ×N

It follows from the constraint that the solution
[
Ŭ
?

s , Ŭ
?

s
]
of the inner

optimization problem satisfies
rank

([
Ŭ
?

s , Ŭ
?

s
])
≤ N
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ESPRIT

Consequence
The minimizer

[
Ŭ
?

s , Ŭ
?

s
]
is the best rank-N approximation of

[
Ûs, Ûs

]
Defining the Singular Value Decomposition[

Ûs, Ûs
]

=

2N∑
k=1

σkgkh
H
k

with σ1 ≥ σ2 ≥ . . . ≥ σ2N, the minimizer
[
Ŭ
?

s , Ŭ
?

s
]
is given by[

Ŭ
?

s , Ŭ
?

s
]

=

N∑
k=1

σkgkh
H
k .

From the constraint[
Ŭ
?

s , Ŭ
?

s
] [ K−1DK

−IN

]
= 0M

2 ×N ⇒ Ψ̂ = K−1DK =
(
Ŭ
?H
s Ŭ

?

s
)−1

Ŭ
?H
s Ŭ

?

s

The eigenvalues of Ψ form the diagonal element of D̂TLS−ESPRIT.
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ESPRIT

To summarize, the TLS-ESPRIT algorithm is carried out in the following steps:

Step 1: Compute the eigendecomposition of the sample covariance
matrix R̂ and obtain the sample signal-subspace Ûs and form the
partitions Ûs and Ûs.
Step 2: Compute the best rank-N approximation

[
Ŭ
?

s , Ŭ
?

s
]
.

Step 3: Compute
Ψ̂ = (Ŭ

?H
s Ŭ

?

s )−1Ŭ
?H
s Ŭs

Step 4: Find the eigenvalues λn(Ψ̂) of Ψ̂ and determine DOA estimates
as θ̂n,ESPRIT = arccos

(
− λ

2π∆ arg
(
λn(Ψ̂)

)), for n = 1, . . . ,N.
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ESPRIT

Recall the Formulation of TLS-ESPRIT

θ̂TLS−ESPRIT = arg min
A(θ)∈AESPRIT

N

min
K∈CN×N

∥∥Ûs − A(θ)K
∥∥2
F

Formulation of (conventional) Least Squares (LS-)ESPRIT

θ̂ESPRIT = arg min
A(θ)∈AESPRIT

N

min
K∈CN×N

∥∥ÛsK−1 − A(θ)
∥∥2
F

Both LS-ESPRIT and TLS-ESPRIT technique are search-free approaches.
The subarray manifold must not be known.
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ESPRIT

In the ESPRIT algorithm the subarrays can also overlap, such as in the case of
ULA:

A(θ) =


1 1 . . . 1
e−j 2πλ d cos(θ1) e−j 2πλ d cos(θ2) · · · e−j 2πλ d cos(θN)

... ... ...
e−j 2πλ (M−1)d cos(θ1) e−j 2πλ (M−1)d cos(θ2) · · · e−j 2πλ (M−1)d cos(θN)



with partition A(θ) and A(θ) denoting the matrices with eliminated first and
last row, respectively.
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ESPRIT

A
... ...

......
... ...

A
A__
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Relaxation Based on Geometry Exploitation
Partly Calibrated Array

0 ∆(2) ∆(3)

0 d(1)2 0 d(2)2 d
(2)
3 0 d(3)2

θ1

θ2 θ3

Partition array into P subarrays, with sensor positions
d∑p−1

l=1 Ml+m = d(p)
m + ∆(p)

Reverse setup as in ESPRIT:
known intra-subarray sensor positions d(p)m and
unknown inter-subarray displacements ∆(p)

d = [dT
1,dT

2, . . . ,dT
P ]T with dp = [d(p)1 , . . . , d(p)Mp ]T where Mp is number of

sensors in p-th subarray.
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Partly Calibrated Array

The array response of the p-th subarray for a source at DOA θ can be
characterized as

ap(θ) = [1, e−j 2πλ d(2)p cos(θ), . . . , e−j 2πλ d(P)p cos(θ)]T.

Let

A(p)
N =

{
Ap ∈ CMp×N| Ap = [ap(ϑ1), . . . ,ap(ϑN)] with ϑ1 < . . . < ϑN ∈ Θ

}
denote the array manifold corresponding to the p-th subarray.
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Partly Calibrated Array

The overall array response is then characterized as

a(θ) = [aT
1(θ), e−j 2πλ ∆(2) cos(θ)aT

2(θ), . . . , e−j 2πλ ∆(P) cos(θ)aT
P(θ)]T

=


a1(θ) 0M1×1 · · · 0M1×1

0M2×1 a2(θ)
. . . ...

... . . . . . . 0MP−1×1
0MP×1 · · · 0MP×1 aP(θ)


︸ ︷︷ ︸

T(θ)


1

e−j 2πλ ∆(2) cos(θ)

...
e−j 2πλ ∆(P) cos(θ)


︸ ︷︷ ︸

h(θ,∆)

where ∆ = [∆(2), . . . ,∆(P)]T ∈ R(P−1)×1.
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Partly Calibrated Array

Defining the block-diagonal subarray responses matrix

T(θ) =


a1(θ) 0M1×1 · · · 0M1×1

0M2×1 a2(θ)
. . . ...

... . . . . . . 0MP−1×1
0MP×1 · · · 0MP×1 aP(θ)


and the reference sensor steering vector

h(θ) =
[
1, e−j 2πλ ∆(2) cos(θ), · · · , e−j 2πλ ∆(P) cos(θ)

]T
we can factorize the array response vector as

a(θ) = T(θ)h(θ,∆).
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Relaxation Based on Geometry Exploitation
Partly Calibrated Array

The overall array manifold depends on the subarray displacements vector ∆:

AN =
{
A = [T1h1, . . . ,TNhN] ∈ CM×N∣∣
Tn = T(ϑn) ∈ T1,hn = h(ϑn,∆) ∈ H1 with ϑ1<. . .<ϑN ∈ Θ

}
where

T1 =
{
T ∈ CM×P| T = T(ϑ) with ϑ ∈ Θ

}
H1 =

{
h ∈ CP×1| h = h(ϑ,∆) with ϑ ∈ Θ; ∆ ∈ R(P−1)×1

}
.
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Rank Reduction Algorithm

Consider first the case of a fully calibrated array, hence the subarray
displacements ∆ are known.
In this case the spectral MUSIC estimator introduced above can be
applied, hence

{â} = N arg min
a∈A1

fMUSIC (a) = N arg min
T∈T1,h∈H1

fMUSIC (T,h)

with

fMUSIC (a) = aHÛnÛ
H
na

fMUSIC (T,h) = hHTHÛnÛ
H
nTh,
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Relaxation Based on Geometry Exploitation
Rank Reduction Algorithm

In the partly calibrated array case the subarray displacements
∆ ∈ R(P−1)×1 are unknown.
Hence, the reference sensor steering vector h(θ,∆) ∈ H1 depends on the
unknown displacements ∆ that must be estimated along with the DOAs
θ1, . . . , θN.
This requires a prohibitive P dimensional parameter search (with
ambiguities).
However, the subarray responses matrix T(θ) ∈ T1 is independent of the
displacements ∆.
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Rank Reduction Algorithm

Relaxation Approach
Relax the manifold structure of the reference sensor steering vector⇒
Replace h(θ,∆) ∈ H1 by an unstructured vector c ∈ CP×1 with
||c||22 = ||h||22 = P
Maintain the manifold structure of the subarray responses matrix T(θ) ∈ T1

Relaxed Array Manifold for Partly Calibrated Array
ĀN =

{
A = [T1c1, . . . ,TNcN]

∣∣Tn∈T1, ||cn||22 = P with ϑ1<. . .<ϑN ∈ Θ
}

with T1 =
{
T ∈ CM×P| T = T(ϑ) with ϑ ∈ Θ

}
.

MUSIC Estimator on Relaxed Array Manifold
{â} = N arg min

a∈Ā1

fMUSIC (a) = N arg min
T∈T1,c

fMUSIC (T, c)

with fMUSIC (a) = aHÛnÛ
H
na = cHTHÛnÛ

H
nTc.

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 106



Relaxation Based on Geometry Exploitation
Rank Reduction Algorithm

MUSIC Estimator on Relaxed Array Manifold
{â} = N arg min

a∈Ā1

fMUSIC (a) = N arg min
T∈T1

min
c

fMUSIC (T, c)

with fMUSIC (a) = aHÛnÛ
H
na = cHTHÛnÛ

H
nTc.

With the relaxation of the reference sensor steering vector manifold the inner
optimization problem exhibits a simple solution.

The solution vector c? corresponds to a minor eigenvector of the matrix

M(P)
RARE(θ) = TH(θ)ÛnÛ

H
nT(θ).
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Relaxation Based on Geometry Exploitation
Rank Reduction Algorithm

Hence the RARE estimator corresponds to{
θ̂
}

= N arg min
θ∈Θ

fRARE(θ)

where the RARE null-spectrum is defined as
fRARE(θ) = λP

(
M(P)

RARE(θ)
)

= λP
(
TH(θ)ÛnÛ

H
nT(θ)

)
,

and λP
(
M(P)

RARE(θ)
) denotes the minor eigenvalue of the P× P matrix M(P)

RARE(θ).

To simplify the evaluation the RARE null-spectrum is often defined as
fRARE(θ) = det

(
M(P)

RARE(θ)
)

= det
(
TH(θ)ÛnÛ

H
nT(θ)

)
.
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Rank Reduction Algorithm

For P > N it follows from Schur complement that the RARE matrix M(P)
RARE(θ)

can be alternatively expressed as

M(N)
RARE(θ) = IP − Û

H
s T(θ)ΩTH(θ)Ûs,

for Ω denoting a constant diagonal matrix defined as Ω =
(
TH(θ)T(θ)

)−1.
In this case the RARE null-spectrum is written as

fRARE(θ) =
(
M(N)

RARE(θ)
)

= λN
(
IN − Û

H
s T(θ)ΩTH(θ)Ûs

)
,

or

fRARE(θ) = det
(
M(N)

RARE(θ)
)

= det
(
IN − Û

H
s T(θ)ΩTH(θ)Ûs

)
,

respectively.
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Sparse Relaxation Techniques
`1-relaxation Techniques

To avoid the difficulty of the multi-dimensional multimodal optimization over
a nonconvex manifold AN the compressed sensing (CS) approach is to sample
the field of view Ω on a fine grid of DOAs

θ̃ = [θ̃1, θ̃2, . . . , θ̃K]T ∈ ΘK

with K � N constructing an fixed overcomplete (fat) dictionary (sensing)
matrix

Ã = A(θ̃) ∈ AK.

In the following we assume for simplicity that the true source DoAs in vector θ
lie on the grid, hence

θn ∈ Θ̃ = {θ̃1, . . . , θ̃K} for n = 1, . . . ,N.
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`1-relaxation Techniques

Observe T snapshots of N source signals impinging on array of M sensors
Sparse representation of M × T measurement matrix

X = ÃF̃ + N

with
M × K sensing matrix Ã =

[
a(θ̃1), . . . ,a(θ̃K)

]
K × T joint sparse signal matrix F̃ = [f̃ (1), . . . , f̃ (T)]
M × T sensor noise matrix N = [n(1), . . . ,n(T)].

θ̃1 θ̃K

Source 3Source 2Source 1
An

te
nn

a
Time

= Di
re
cti

on

Time

X = Ã F̃
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`1-relaxation Techniques

`p,q mixed-norm of matrix F̃ =
[
f̃ 1, . . . , f̃K

]T
:

f̃ 1...
f̃K


‖f̃ 1‖p...
‖f̃K‖p

⇒‖F̃‖p,q =

( K∑
k=1
‖f̃ k‖qp

) 1
q

.

Nonlinear coupling of elements in row vectors f̃ k by `p-norm.
Ideal for sparse reconstruction: `p,0-norm with p ≥ 2.
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`1-relaxation Techniques

With dictionary Ã the LS fitting problem can be equivalently reformulated as

min
F̃∈CK×T

‖X − Ã F̃‖2F

subject to ‖F̃‖p,0 = N.

Note, that the sensing matrix Ã is fat, hence the equation X = Ã F̃ has
infinitely many exact solutions.
Hence, in the `p,0-constrained problem we search for an N-row sparse
solution that minimizes the fitting error.
Dictionary Ã is constant, hence the optimization over manifold AN has
been avoided in the problem reformulation.
However, the `p,0-constraint is still nonconvex and combinatorial.
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Sparse Relaxation Techniques
`1-relaxation Techniques

To solve the problem Lagrangian relaxation can be applied. The
corresponding dual function is

d(λ) = min
F̃∈CK×T

1
2‖X − Ã F̃‖2F + λ‖F̃‖p,0 − λN

for λ ≥ 0.
The Lagrange multiplier λ marks the cost associated with the violation of
the `p,0 constraint.
The Lagrangian minimization problem provides a lower bound for the
objective function value of the `p,0 constrained LS matching problem
above.
We will later discuss a practical procedure for finding a suitable λ.
The relaxed problem is still nonconvex due to the nonconvexity of the `p,0
mixed-norm, hence convex approximation techniques can be applied.
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`1-relaxation Techniques

A common convex approximation of the `p,0-pseudo-norm that is known
to promote sparse solutions is the `p,1-norm. This approximation is
commonly termed `1-norm relaxation,...
... even though depending on the choice of λ it may not necessarily
represent a relaxation of the the `0 constrained LS matching problem
above in the optimization relaxation sense (the lower bound property is
not necessarily satisfied).
Further, for fixed λ dropping constant terms we obtain the `1 regularized
LS problem also known as LASSO [Yang’18].

ˆ̃Fλ = min
F̃∈CK×T

1
2‖X − Ã F̃‖2F + λ‖F̃‖p,1

where λ ≥ 0.
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`1-relaxation Techniques

Multiple Snapshot Problem – Mixed-Norm Regularization

`2,1 Mixed-norm minimization [Malioutov’05], [Yuan’05]

min
F̃

1
2
∥∥∥X − ÃF̃

∥∥∥2
F

+ λ
∥∥∥F̃∥∥∥

2,1
.

Problem: For large number of snapshots T or large number of candidate
frequencies K the problem becomes computationally intractable.
Heuristic approach: Reduction of the dimension of measurement matrix X
by `1-SVD and adaptive grid refinement,
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`1-relaxation Techniques

Choice of regularization parameter λ
It can be proven that with the choice

λ ≥ λmax = max
k=1,...,K

‖ãH
k X‖2

the all zero matrix ˆ̃Fλ = ˆ̃Fλmax = 0K×T is always the optimal solution of
the `2,1 mixed-norm problem.
Hence λmax provides an upper bound for the choice of λ.
The bisection algorithm can be used to find the smallest value of λN,min

for which an N-row-sparse solution matrix ˆ̃FλN,min
is obtained, i.e.,

‖ˆ̃FλN,min
‖2,0 = N.
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If the solution is not N-row sparse, choose the N-largest local maxima.
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Sparse Relaxation Techniques
Equivalent Formulation

SPARROW Formulation [Steffen’16]
The `2,1 mixed-norm minimization problem

min
F̃∈CK×T

1
2
∥∥∥X − ÃF̃

∥∥∥2
F

+ λ
√
T
∥∥∥F̃∥∥∥

2,1

is equivalent to SPARse ROW-norm reconstruction (SPARROW)

min
G∈DK

+

Tr((ÃGÃH
+ λI)−1R̂

)
+ Tr (G),

with R̂ = XXH/T and minimizers ˆ̃F = [
ˆ̃f 1 . . . ,

ˆ̃fK]T and Ĝ = diag(ĝ1, . . . , ĝK) as

ˆ̃F = ĜÃH
(ÃĜÃH

+ λI)−1X and ĝk = ‖ˆ̃f k‖2/
√
T for k = 1, . . . ,K.
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Sparse Relaxation Techniques
Equivalent Formulation

SPARROW formulation
min
G∈DK

+

Tr((ÃGÃH
+ λI)−1R̂

)
+ Tr(G).

SDP implementation for oversampled case T > M
min

G∈DK
+,UM

Tr(UMR̂) + Tr(G)

subject to
[
UM IM
IM ÃGÃH

+ λIM

]
� 0 ⇔ UM �

(
ÃGÃH

+ λIM
)−1

.

SDP implementation for undersampled case T ≤ M
min

G∈DK
+,UT

1
TTr(UT) + Tr(G)

subject to
[
UT XH

X ÃGÃH
+ λIM

]
� 0 ⇔ UT � XH(ÃGÃH

+ λIM
)−1X.
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Sparse Relaxation Techniques
Simulation Results

Uncorrelated Source Signals
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Sparse Relaxation Techniques
Simulation Results

Correlated Source Signals
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Majorization-Minimization Techniques
Expectation-Maximization

Properties of Multi-source Criteria
Excellent threshold and asymptotic estimation performance.
Full N-dimensional search required.
Prohibitive complexity for scenarios where N > 3.

Solution: Approximation Methods
Approximation techniques such as Alternating Projection, Block Coordinate
Descent, viable options for local convergence.
Majorization-minimization (MM) approach is an iterative optimization
technique.
Original optimization problem approximated by a sequence of upper bound
problems.
The approximate problems much easier to solve than the original problem
(e.g. closed form).
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Majorization-Minimization Techniques
Expectation-Maximization

αα̂(k)

original function L(x|α)

α̂(k+1)

approx. function L̄(k)(x|α; α̂(k))
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Majorization-Minimization Techniques
Expectation-Maximization

ML problem:
α̂ML = arg min

α
L
(
x|α
)
.

Approximate problem at point α̂(k) in iteration k:
α̂(k+1) = arg min

α
L̄(k)(x|α; α̂(k))

where the approximate function L̄(k)(x|α; α̂(k)) is chosen such that it satisfies
upper bound property:

L̄(k)(x|α; α̂(k)) ≥ L(x|α), ∀α

tightness at α̂(k):
L̄(k)(x|α̂(k); α̂(k)) = L

(
x|α̂(k)).
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Majorization-Minimization Techniques
Expectation-Maximization

Expectation-maximization (EM) algorithm [Miller’90] [Dempster’77] is a special
case of the MM algorithm [Hunter’04], [Luo’16].
Unobserved data y only available through mapping x = T

(
y
), hence

given y the observed data x is fully determined.
f(x|y,α) is conditional pdf of observations x given unobserved data y
with parameterization α.
f(y|α) is pdf of unobserved data y with parameterization α.
In the EM algorithm the negative likelihood is approximated by Jensen’s
inequality

L
(
x|α
)

= − lnEy|x,α̂(k)

( f(x, y|α)

f(y|x, α̂(k))

)
≤ −Ey|x,α̂(k)

(
ln
(f(y|α)

))
+ constant , L̄(k)(x|α; α̂(k)).
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Majorization-Minimization Techniques
Expectation-Maximization

Consider example of DML signal model with known noise variance ν

x(t) =

N∑
n=1

a(θn)sn(t) + n(t)

where A = [a(θ1), . . . ,a(θN)] ∈ AN and n(t) ∼ NC
(
0M, νIM

).
Define unobserved data yT(t) = [yT

1(t), . . . , yT
N(t)] as individual source

contributions
yn(t) = a(θn)sn(t) + nn(t), n = 1, . . . ,N

with i.i.d. nn(t) ∼ NC
(
0M×1, νnIM

) and∑N
n=1 νn = ν.

Then

x(t) =

N∑
n=1

yn(t) =

N∑
n=1

a(θn)sn(t) + n(t), where n(t) =

N∑
n=1

nn(t).
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Majorization-Minimization Techniques
Expectation-Maximization

Expectation Step
At point α̂(k) = [θ̂

(k)T
, ŝ(k)T]T in iteration k, the approximate upper bound

function can be characterized as

L̄(k)(x,θ, s|θ̂
(k)
, ŝ(k)) ∝

N∑
n=1

Eyn|x,α̂(k)

(
ln
(f(yn|α)

))
∝ −

N∑
n=1

∥∥∥a(θ̂
(k)
n )̂s(k)n −

1
N
(
x− A(θ̂

(k)
)ŝ(k)

)
︸ ︷︷ ︸

ŷ(k)n (t)

−a(θn)sn
∥∥∥2

where we omitted constant terms.
Maximization Step(
θ̂

(k+1)
n , ŝ(k+1)

n
)

= arg min
θn,sn(1),...,sn(T)

T∑
t=1

∥∥∥a(θn)sn(t)− ŷ(k)
n (t)

∥∥∥2 , for n = 1, . . . ,N.

Solved in parallel or sequentially. Each subproblem is simple to solve.
January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 132



Table of Contents

Introduction to Direction-of-Arrival (DOA) Estimation
Motivation
Conventional Signal Model

Revision of DOA Estimators
Optimal Parametric Methods
Approximation/Relaxation Concept and its Application

Spectral-based Techniques
Relaxation Based on Geometry Exploitation
Sparse Reconstruction Methods
Majorization-Minimization

Asymptotic Performance Bound
Conventional Cramér-Rao Bound
Partially-relaxed Cramér-Rao Bound

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 133



Asymptotic Performance Bound
Review of Crámer-Rao Bound

Parametric Model
Random stationary process x.
Observations over time x(t) ∈ X for t = 1, . . . ,T of the random process x.
Non-redundant deterministic parameter vector α = [α1, . . . , αI]

T ∈ RI×1.
Probability density function for a given parameter fx (x|α).

Objective of Parametric Estimation
Assumption: Independent observations over time drawn from the same
probability density function with the true parameter αtrue.
Given the observations {x(1), . . . , x(T)} and the family of the probability
density functions fx(x|α).
Estimate αtrue by an estimator α̂.
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Asymptotic Performance Bound
Review of Crámer-Rao Bound

For a given estimator α̂ = T(x(1), . . . , x(T)
)

Bias µ = E {α̂}.
Covariance Σ = E

{
(α̂− µ) (α̂− µ)

H
}
.

Fisher Information Matrix
Under some regularity conditions, the Fisher Information Matrix (FIM) is
defined as

I(α) = −E
{
O2

α

(
log fx(x|α)

)}
.

Crámer-Rao Inequality
For any unbiased estimator α̂ with the covariance matrix Σ, we have

Σ � C (αtrue) =
[
I (αtrue)

]−1
.
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Asymptotic Performance Bound
Review of Crámer-Rao Bound

Special Case: Gaussian case
Parameter vector: α = [α1, . . . , αI]

T.
Circularly-symmetric complex Gaussian observation: x ∼ NC

(
m(α),K (α)

).
Slepian-Bangs Formula
The ij-th element of the FIM matrix is given by[

I (α)
]
ij

=Tr
(
K(α)−1

∂K(α)

∂αi
K(α)−1

∂K(α)

∂αj

)
+ 2Re

{
∂m(α)H

∂αi
K(α)−1

∂mH(α)

∂αj

}
.

Necessary condition for the invertibility of the FIM matrix
The parameter vector must be locally identifiable.
Consequence: the parameters must be non-redundant.
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Asymptotic Performance Bound
Review of Crámer-Rao Bound

Partition the FIM matrix

I(α) =

[
Iθθ Iθβ

Iβθ Iββ

]
=

[
Cθθ Cθβ

Cβθ Cββ

]−1
with α =

[
θT,βT

]T
θ contains desired parameters.
β contains nuisance parameters.

Crámer-Rao bound of the desired parameters θ

Cθθ =
(
Iθθ − IθβI−1ββIβθ

)−1
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Asymptotic Performance Bound
Review of Crámer-Rao Bound

Recall the Deterministic Signal Model

x(t) ∼ NC
(
A(θ)s(t), νI) for all t = 1, . . . ,T.

Deterministic Crámer-Rao Bound
Cdet(θ) = Cθθ =

ν

2TRe
{
P̂
T
�
(
DHΠ⊥A D

)}−1
P̂ =

1
T

T∑
t=1

s(t)sH(t) =
1
TSS

H D =

[da(θ1)

dθ , . . . ,
da(θN)

dθ

]
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Asymptotic Performance Bound
Review of Crámer-Rao Bound

Recall the Stochastic Signal Model

x(t) ∼ NC
(
0,A(θ)PAH(θ) + νI

) for all t = 1, . . . ,T

Stochastic Crámer-Rao Bound
Csto(θ) = Cθθ =

ν

2TRe
{
MT �

(
DHΠ⊥A D

)}−1
M = PAHR−1AP D =

[da(θ1)

dθ , . . . ,
da(θN)

dθ

]
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Asymptotic Performance Bound
Crámer-Rao Bound for Partial Relaxation Model

Relaxed Array Manifold
ĀN =

{
A|A = [a(θ),B] ,a(θ) ∈ A1,B ∈ CM×(N−1) and rank (A) = N

}

A ∈ AN A ∈ ĀN

Partial Relaxation

Partial Relaxation Model for Time Instant t
x(t) = As(t) + n(t) with A ∈ ĀN.
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Asymptotic Performance Bound
Crámer-Rao Bound for Partial Relaxation Model

Relaxed Array Manifold
ĀN =

{
A|A = [a(θ),B] ,a(θ) ∈ A1,B ∈ CM×(N−1) and rank (A) = N

}

A ∈ AN A ∈ ĀN

Partial Relaxation

How does the array manifold relaxation affect the DOA estimation?
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Asymptotic Performance Bound
Crámer-Rao Bound for Partial Relaxation Model

Reparameterization for Redundancy Elimination [Trinh-Hoang’20-2]

R = APAH + νIM R = APAH + νIM R = ĀP̄ĀH
+ νIM

A(θ) ∈ AN A =

a1(ϑ) bT1
a2(ϑ) B2
a3(ϑ) B3

 ∈ ĀN Ā = AT =

a1(ϑ) 0T
a2(ϑ) B̄
a3(ϑ) IN−1



Partial Relaxation Reparameterization

Structure of the desired direction is unaltered.
Non-redundancy of the parameterization is ensured.
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Asymptotic Performance Bound
Expression of the PR-CRB

Recall the conventional Crámer-Rao Bound

Csto (θ) =
ν

2TRe
{
M �

(
DHΠ⊥A D

)}−1
M =

(
PAHR−1AP

)T

=

[
M11 MH

21
M21 M22

] D =

[da(θ1)

dθ , . . . ,
da(θN)

dθ

]
= [d,D2]

Crámer-Rao Bound for ϑ = θ1 under the PR model

CPR-CRB (ϑ) =
ν

2T
((

M11 −MH
21M−122 M21

)
dH

Π⊥A d
)−1

.
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Asymptotic Performance Bound
Expression of the PR-CRB - Implications

Crámer-Rao Bounds

Csto (θ) =
ν

2TRe
{
M �

(
DHΠ⊥A D

)}−1
CPR-CRB (ϑ) =

ν

2T
((

M11 −MH
21M−122 M21

)
dH

Π⊥A d
)−1

PR-CRB is always lower-bounded by the conventional CRB, i.e.

CPR-CRB (ϑn) ≥
[
Csto (θ)

]
nn
, for n = 1, . . . ,N.

In the case of high SNR and uncorrelated source signals, the two bounds
are approximately equal.
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Asymptotic Performance Bound
Expression of the PR-CRB - Implications

Recall the null-spectrum of PR-DML and PR-WSF estimator

fPR-DML(a) =

M∑
k=N

λk
(
Π⊥a R̂

)
fPR-WSF(a) = λN

(
Π⊥a ÛsWÛ

H
s
)

Asymptotically as T →∞,
The mean-square error of PR-WSF achieves PR-CRB for all positive definite
weighting matrix W.

The mean-square error of PR-WSF, PR-DML and MUSIC are identical.
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Concluding Remarks

Problem relaxation
Deliberately ignoring part of the prior knowledge is a powerful approach to
make complicated estimation problems computationally tractable (without
sacrificing much performance).

Partial array geometry relaxation.
Relaxation of interference structure.

Extensions?
Revisit established algorithms for more advanced measurement models
and design your own relaxation algorithms!!!

Use PR models in the performance analysis:
Understand which model information is relaxed in a particular algorithm.
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MATLAB Code is available at
https://git.rwth-aachen.de/minh.trinh_hoang/

eusipco-2020-tutorial-source-code.git
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Thank you for your attention!
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