Four Decades of Array Signal Processing Research: An Optimization Relaxation Technique Perspective

Marius Pesavento, Minh Trinh-Hoang and Mats Viberg

TECHNISCHE UNIVERSITÄT DARMSTADT

Technical University of Darmstadt Darmstadt, Germany

Blekinge Institute of Technology Karlskrona, Sweden

Acknowledgement

Special thanks to

- Christian Steffens
- Yang Yang

Financial support from

- **EXPRESS II** project (DFG-German Research Foundation Priority Program SSP-1798 CoSIP) under project number PE2080/1-2.
- **PRIDE** project (DFG German Research Foundation) under project number PE2080/2-1.

Prof. Alex B. Gershman (1962-2011)

Great scientist, teacher and friend.

Introduction Motivation

Direction-of-Arrival (DoA) Estimation

- Objective: Determine directions of multiple superimposed signals in the presence of noise from signals at sensor arrays.
- Closely related to fundamental problems: harmonic retrieval, frequency estimation, and time-delay estimation.
- Numerous classical and recent applications:
 - Radar, sonar (source localization, military, automotive).
 - Communications (directed transmission, satellite communication).
 - Radio Astronomy (high resolution imaging).
 - Medical Imaging (ultrasound, tomography).
 - Geophysical Exploration (seismic, oil exploration).
 - Biomedical (hearing aids, heart rate monitoring).
- More recent applications:
 - Drone localization at airports and public buildings.
 - Parametric channel estimation and user localization in Massive MIMO.

Introduction Motivation

Direction-of-Arrival (DoA) Estimation

- A mature topic with long history of development.
 - Patent by Stone Stone in 1902 for RF-based direction finding using a two element array with less than half wavelength [Stone'1902], [Stone'1906-2].

- Later improved upon by De Forest [de Forest'1904], Marconi [Marconi'1906], Bellini and Tosi [Bellini'1909], [Bellini'1910], and Adcock [Adcock'1919].
- See [Schantz'11] for an overview on the origin of RF-based direction finding
- Trend toward digital processing in the 60s by [Capon'66], [Capon'67]
- Development of "super resolution" algorithms since the late 70s, including [Schmidt'79],

[Schmidt'81], [Bienvenu'79], [Barabell'83], [Böhme'84], [Ziskind'88], [Stoica'89], [Böhme'86], [Viberg'9]

• In this tutorial, we revisit several aspects in the last four decades of "super-resolution" DoA estimation from a unified perspective.

Arbitrary array with M sensors

Arbitrary array with M sensors

Collection of array responses on the sampled field-of-view

Arbitrary array with M sensors

Introduction DoA Estimation Problem

Arbitrary array with M sensors

Introduction DoA Estimation Problem

Multiple Classes of DoA Estimators:

- Maximum Likelihood Estimators,
- Spectral-based methods,
- Search-free methods,

...

Goal of this Tutorial: Insight into Conventional and Modern DoA Estimators from the Perspective of Optimization Techniques

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 13

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 13

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 13

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 13

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 13

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 13

Motivation Tutorial Overview

- The tutorial addresses both,
 - experienced researchers in sensor array processing, as well as,
 - newcomers to the field.
- We approach classical and novel DoA estimation methods from a modern optimization (problem approximation/relaxation) perspective.
- We highlight, how problem approximation and relaxation have always played an important role in developing efficient algorithms:
 - sometimes explicitly in the design ...
 - ... often implicitly, as the consequence of proposed (ad-hoc) algorithms.
- We show novel derivations for existing algorithms that explicitly highlight the use of relaxation of prior knowledge ...
- ... and introduce a framework for designing novel algorithms under partial relaxation.

Table of Contents	
Introduction to Direction-of-Arrival (DoA) Estimation	
Motivation	
 Conventional Signal Model 	Part I
Revision of DOA Estimators	
 Optimal Parametric Methods 	
Approximation/Relaxation Concept and its Application	Dort II
 Spectral-based Techniques 	Part II
 Relaxation Based on Geometry Exploitation 	Dart III
Sparse Reconstruction Methods	r art m
 Majorization-Minimization Asymptotic Performance Bound Conventional Cramér-Rao Bound Partially-relaxed Cramér-Rao Bound 	Part IV

Table of Contents

Introduction to Direction-of-Arrival (DoA) Estimation

Motivation

Conventional Signal Model

Revision of DOA Estimators

- Optimal Parametric Methods
- Approximation/Relaxation Concept and its Application
 - Spectral-based Techniques
 - Relaxation Based on Geometry Exploitation
 - Sparse Reconstruction Methods
 - Majorization-Minimization

Asymptotic Performance Bound

- Conventional Cramér-Rao Bound
- Partially-relaxed Cramér-Rao Bound

- Sensor array composed of *M* sensors.
- N sources in the far-field of the array. (distance $\gg \frac{2 \times (\text{diameter of array})^2}{\text{wavelength}}$)
- N plane wave narrow-band signals impinge on array.
- We assume that the number of sensors *M* exceeds the number of source signals *N*, hence *M* > *N*.

Narrowband condition:

• The relative bandwidth of the signals is small.

relative bandwidth =
$$\frac{\text{signal bandwidth}}{\text{carrier frequency}} \ll \frac{1}{\pi M}$$

• The maximal traveling time τ_{max} across the array is substantially smaller than the effective correlation time of signal waveforms.

Array measurement (snapshot) at time instant t

 $\boldsymbol{x}(t) = \boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{s}(t) + \boldsymbol{n}(t)$

- $\boldsymbol{\theta} = [\theta_1, \dots, \theta_N]^{\mathsf{T}}$: DOAs of *N* source signals.
- W.l.o.g. we consider only azimuth angle estimation $\theta \in \Theta = [0, 180^{\circ})$.
- $A(\theta) = [a(\theta_1), ..., a(\theta_N)] \in \mathbb{C}^{M \times N}$: Steering matrix.
- $a(\theta)$: Steering vector from the direction θ .

• Dependent on the geometry of the sensor array and the direction θ .

Example: Uniform Linear Array (ULA) with baseline *d*:

$$\boldsymbol{a}(\theta) = [1, e^{-j\frac{2\pi}{\lambda}d\cos(\theta)}, \dots, e^{-j\frac{2\pi}{\lambda}(M-1)d\cos(\theta)}]^{\mathsf{T}}$$

Array manifold

$$\mathcal{A}_N = \left\{ \boldsymbol{A} \in \mathbb{C}^{M \times N} | \ \boldsymbol{A} = [\boldsymbol{a}(\vartheta_1), \dots, \boldsymbol{a}(\vartheta_N)] \ \text{with} \ \boldsymbol{0} \leq \vartheta_1 < \dots < \vartheta_N < 180^\circ \right\}$$

Array measurement (snapshot) at time instant t

$$\boldsymbol{x}(t) = \boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{s}(t) + \boldsymbol{n}(t)$$

x(t) = [x₁(t),...,x_M(t)]^T ∈ C^{M×1}: Receive signal vector of the *M* sensors.
 s(t) = [s₁(t),...,s_N(t)]^T ∈ C^{N×1}: Source signal vector of the *N* sources.
 n(t) = [n₁(t),...,n_M(t)]^T ∈ C^{M×1}: Sensor noise vector of the *M* sensors.

Sensor noise $\mathbf{n}(t)$ modeled as complex circular Gaussian random variable $\mathbf{n}(t)$, with:

- Identical noise variance (power) ν in all sensors (uniform).
- Independent noise in different antennas (spatially white).
- Independent noise in different time instants (temporally white).

Uniform spatially and temporally white noise

- Zero mean: $\mathbb{E} \{ \mathbf{n}(t) \} = \mathbf{0}_M.$
- Covariance matrix: $\mathbb{E}\left\{\mathbf{n}(t)\mathbf{n}^{\mathsf{H}}(t)\right\} = \nu I_{M} \in \mathbb{C}^{M \times M}.$

Multiple measurement version: T snapshots

 $X = A(\theta)S + N$

- $\boldsymbol{X} = [\boldsymbol{x}(1), \boldsymbol{x}(2), ..., \boldsymbol{x}(T)] \in \mathbb{C}^{M \times T}$: Receive signal matrix.
- **s** = [s(1), s(2), ..., s(T)] $\in \mathbb{C}^{N \times T}$: Source signal matrix.
- $N = [n(1), n(2), ..., n(T)] \in \mathbb{C}^{M \times T}$: Sensor noise matrix.
- T : Number of available snapshots.

Objective:

Given the receive signal *X* and the mapping $\theta \mapsto A(\theta)$, estimate the DOAs θ

Conventional Signal Model Stochastic and Deterministic Covariance Model

Signal waveform s(t) modeled as complex circular Gaussian random variable $\mathbf{s}(t)$.

Stochastic (unconditional) signal model

- Zero mean:
- Signal covariance matrix:
- Non-singularity:
- Gaussian measurements:
- Receive correlation matrix:
- Parameter characterization:

 $\mathbb{E} \{ \mathbf{s}(t) \} = \mathbf{0}_{N}.$ $P = \mathbb{E} \{ \mathbf{s}(t)\mathbf{s}^{\mathsf{H}}(t) \} \in \mathbb{C}^{N \times N}.$ $P \succ 0 \text{ (not fully coherent signals)}.$ $\mathbf{x}(t) \sim \mathcal{N}_{\mathsf{C}}(\mathbf{0}_{M}, \mathbf{R}).$ $R = \mathbb{E} \{ \mathbf{x}(t)\mathbf{x}^{\mathsf{H}}(t) \}.$ $= \mathbf{A}(\theta)\mathbf{P}\mathbf{A}^{\mathsf{H}}(\theta) + \nu \mathbf{I}_{M} \in \mathbb{C}^{M \times M}.$ $\theta \in \Theta^{N}, \mathbf{P} \in \mathbb{C}^{N \times N}, \nu \in \mathbb{R}_{+}.$

Number of parameters independent of number of observations T.

Conventional Signal Model Stochastic and Deterministic Covariance Model

Signal waveform s(t) modeled as deterministic quantity. Received signal $\mathbf{x}(t)$ modeled as random variable $\mathbf{x}(t) = \mathbf{A}(\boldsymbol{\theta})\mathbf{s}(t) + \mathbf{n}(t)$.

Deterministic (conditional) signal model

- Gaussian measurements:
- Parameter characterization: $\boldsymbol{\theta} \in \Theta^N$

$$\mathbf{X}(t) \sim \mathcal{N}_{\mathsf{C}}(\mathbf{A}(\boldsymbol{\theta})\mathbf{s}(t), \nu \mathbf{I}).$$

$$\boldsymbol{s} = [\boldsymbol{s}(1), \boldsymbol{s}(2), ..., \boldsymbol{s}(T)] \in \mathbb{C}^{N \times T}, \nu \in \mathbb{R}_+.$$

Number of parameters grows with number of observations *T*.

Conventional Signal Model Stochastic and Deterministic Covariance Model

- In practice, the true receive signal covariance matrix *R* is not available and must be estimated from finite samples.
- A commonly used sample covariance/correlation matrix estimator is given as:

Sample covariance/correlation matrix

$$\hat{\boldsymbol{R}} = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{x}(t) \boldsymbol{x}^{\mathsf{H}}(t) = \frac{1}{T} \boldsymbol{X} \boldsymbol{X}^{\mathsf{H}}$$

Table of Contents

Introduction to Direction-of-Arrival (DoA) Estimation

- Motivation
- Conventional Signal Model

Revision of DOA Estimators

- Optimal Parametric Methods
 - Determistic Maximum Likelihood
 - Stochastic Maximum Likelihood
 - Weighted Subspace Fitting
 - Covariance Matching Estimation Techniques
- Approximation/Relaxation Concept and its Application

Asymptotic Performance Bound

- Conventional Cramér-Rao Bound
- Partially-relaxed Cramér-Rao Bound

Optimal Parametric Methods Maximum Likelihood

General procedure [Lehmann'98]

- Step 1: Determine analytically a multivariate $pdf f(\mathbf{x}(1), ..., \mathbf{x}(T)|\alpha)$ as a function of random observation model vectors and nonrandom parameters α .
- Step 2: Insert actual observations $\mathbf{x}(1), \ldots, \mathbf{x}(T)$ instead of "hypothetical" observation model vectors (random variables) $\mathbf{x}(1), \ldots, \mathbf{x}(T)$ to obtain the so-called likelihood function $f(\mathbf{x}(1), \ldots, \mathbf{x}(T) | \alpha)$ from the pdf.
- **Step 3:** Maximize the likelihood function w.r.t. all unknown parameters and to ML parameter estimates, i.e.

$$\hat{\boldsymbol{\alpha}}_{\mathrm{ML}} = \operatorname*{arg\,max}_{\boldsymbol{\alpha}} f(\boldsymbol{x}(1), \dots, \boldsymbol{x}(T) | \boldsymbol{\alpha})$$

Why is Maximum Likelihood important?

• Maximum Likelihood achieves the Cramér-Rao lower-bound (under mild regularity conditions).

Optimal Parametric Methods Maximum Likelihood

Concentration of ML function

- Use a specific partition $\boldsymbol{\alpha} = [\boldsymbol{\alpha}_1^\mathsf{T}, \boldsymbol{\alpha}_2^\mathsf{T}]^\mathsf{T}$ of the parameter vector.
- Maximize the likelihood function w.r.t. part of the variables, e.g., the partition α₂, while considering other variables as constant. Hence,

$$\max_{\boldsymbol{\alpha}} f(\boldsymbol{x}(1),\ldots,\boldsymbol{x}(T)|\boldsymbol{\alpha}) = \max_{\boldsymbol{\alpha}_1} \underbrace{\max_{\boldsymbol{\alpha}_2} f(\boldsymbol{x}(1),\ldots,\boldsymbol{x}(T)|\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2)}_{g(\boldsymbol{x}(1),\ldots,\boldsymbol{x}(T)|\boldsymbol{\alpha}_1)}$$

$$g(\mathbf{x}(1),\ldots,\mathbf{x}(T)|\boldsymbol{\alpha}_{1}) = f(\mathbf{x}(1),\ldots,\mathbf{x}(T)|\boldsymbol{\alpha}_{1},\hat{\boldsymbol{\alpha}}_{2,\mathrm{ML}}(\boldsymbol{\alpha}_{1})),$$
$$\hat{\boldsymbol{\alpha}}_{1,\mathrm{ML}} = \operatorname*{arg\,max}_{\boldsymbol{\alpha}_{1}} g(\mathbf{x}(1),\ldots,\mathbf{x}(T)|\boldsymbol{\alpha}_{1}).$$

Optimal Parametric Methods Deterministic Maximum Likelihood

Under the deterministic (unconditional) model [Böhme'84], [Wax'85], [Ziskind'88]

$$\mathbf{x}(t) \sim \mathcal{N}_{\mathsf{C}}(\mathbf{A}(\boldsymbol{\theta})\mathbf{s}(t), \nu \mathbf{I})$$

with parameter vector $\boldsymbol{\alpha} = [\boldsymbol{\theta}^{\mathsf{T}}, \boldsymbol{s}^{\mathsf{T}}(1), \dots, \boldsymbol{s}^{\mathsf{T}}(T), \nu]^{\mathsf{T}}$. Hence the corresponding likelihood is

$$f(\mathbf{x}(1),\ldots,\mathbf{x}(T)|\boldsymbol{lpha}) = \prod_{t=1}^T rac{1}{(\pi
u)^M} \exp\left(-rac{\|\mathbf{x}(t) - \mathbf{A}(\boldsymbol{ heta})\mathbf{s}(t)\|^2}{
u}
ight).$$

The negative log-likelihood is

$$\mathcal{L}(\mathbf{x}(1),\ldots,\mathbf{x}(T)|\boldsymbol{\alpha}) = \sum_{t=1}^{T} M \ln(\pi\nu) + \sum_{t=1}^{T} \frac{1}{\nu} \|\mathbf{x}(t) - \mathbf{A}(\boldsymbol{\theta})\mathbf{s}(t)\|^{2}.$$
Closed-form expressions for ML estimates for fixed θ

$$\hat{s}_{\text{DML}}(t) = \left(\boldsymbol{A}^{\text{H}}(\boldsymbol{\theta})\boldsymbol{A}(\boldsymbol{\theta})\right)^{-1}\boldsymbol{A}^{\text{H}}(\boldsymbol{\theta})\boldsymbol{x}(t) = \boldsymbol{A}^{\dagger}(\boldsymbol{\theta})\boldsymbol{x}(t)$$
$$\hat{\nu}_{\text{DML}} = \frac{1}{M}\text{Tr}\left(\boldsymbol{\Pi}_{\boldsymbol{A}(\boldsymbol{\theta})}^{\perp}\hat{\boldsymbol{R}}\right)$$

and where

$$egin{aligned} &A^{\dagger}(m{ heta}) = ig(A^{\mathsf{H}}(m{ heta})A(m{ heta})ig)^{-1}A^{\mathsf{H}}(m{ heta})\ &\Pi_{A(m{ heta})} = A(m{ heta})A^{\dagger}(m{ heta}) \end{aligned}$$
 and $&\Pi_{A(m{ heta})}^{\perp} = I - \Pi_{A(m{ heta})} \end{aligned}$

denote the pseudo-inverse of $A(\theta)$, projectors onto the range space of $A(\theta)$ and onto the nullspace of $A^{H}(\theta)$, respectively.

Inserting $\hat{s}_{\text{DML}}(t)$ and $\hat{\nu}_{\text{DML}}$ back into the negative log-likelihood

$$\mathcal{L}(\mathbf{x}(1),\ldots,\mathbf{x}(T)|\boldsymbol{ heta}) = TM\left(\ln\left(\mathrm{Tr}(\mathbf{\Pi}_{\boldsymbol{A}(\boldsymbol{ heta})}^{\perp}\hat{\boldsymbol{R}})\right) + \ln(\pi) - \ln(M) + 1\right).$$

Minimization w.r.t. θ : [Böhme'84]

.

$$egin{aligned} \hat{m{ heta}}_{ ext{DML}} &= rg\min_{m{ heta}} \mathcal{L}ig(m{x}(1),\ldots,m{x}(T)|m{ heta}ig) \ &= rg\min_{m{ heta}} \operatorname{Tr}ig(\mathbf{\Pi}_{m{A}(m{ heta})}^{ot}\hat{m{R}}ig) \end{aligned}$$

Interpretation: Find DoAs such that the total received energy in the noise subspace is minimized.

Minimization of the concentrated negative log-likelihood function

$$f_{\text{DML}}(\boldsymbol{\theta}) = \text{Tr} \left(\boldsymbol{\Pi}_{\boldsymbol{A}(\boldsymbol{\theta})}^{\perp} \hat{\boldsymbol{R}} \right)$$

- $f_{\text{DML}}(\theta)$ is highly multi-modal, many local optima with cost close to global optimum.
- Minimum cannot be computed in closed form.
- Costly *N* dimensional search over field of view is required.
- Complexity grows exponentially with number of sources *N*.
- Generally, complexity becomes prohibitive if *N* > 3 sources.

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 33

Optimal Parametric Methods Stochastic Maximum Likelihood

Under the stochastic (unconditional) model

[Böhme'86], [Bresler'88], [Jaffer'88], [Stoica'90-2]

$$\mathbf{X}(t) \sim \mathcal{N}_{\mathrm{C}}(\mathbf{0}_{M}, \mathbf{R})$$

with $\mathbf{R} = \mathbf{E} \mathbf{x}(t) \mathbf{x}^{\mathsf{H}}(t) = \mathbf{A}(\boldsymbol{\theta}) \mathbf{P} \mathbf{A}^{\mathsf{H}}(\boldsymbol{\theta}) + \nu \mathbf{I}_{M}$ and parameter vector $\boldsymbol{\alpha} = [\boldsymbol{\theta}^{\mathsf{T}}, \boldsymbol{p}^{\mathsf{T}}, \nu]^{\mathsf{T}}$.

Vector $\boldsymbol{p} \in \mathbb{R}^{N^2}$ contains the *N* elements on diagonal of matrix \boldsymbol{P} and the $(N^2 - N)$ elements characterizing real and imaginary part of upper triangular of \boldsymbol{P} .

Hence the corresponding likelihood is

$$f(\mathbf{x}(1),\ldots,\mathbf{x}(T)|\boldsymbol{\alpha}) = \prod_{t=1}^{T} \frac{1}{\pi^{M} \det(\mathbf{R})} \exp\left(-\mathbf{x}^{\mathsf{H}}(t)\mathbf{R}^{-1}(\boldsymbol{\theta})\mathbf{x}(t)\right).$$

Optimal Parametric Methods Stochastic Maximum Likelihood

The negative log-likelihood is

$$\mathcal{L}(\mathbf{x}(1),\ldots,\mathbf{x}(T)|\boldsymbol{\alpha}) = T\left(M\ln(\pi) + \ln\det(\mathbf{R}) + \operatorname{Tr}(\mathbf{R}^{-1}\hat{\mathbf{R}})\right)$$

Closed-form expressions for ML estimates for fixed θ

$$\hat{\nu}_{\text{SML}} = \frac{1}{M - N} \text{Tr} \left(\Pi_{A(\theta)}^{\perp} \hat{R} \right)$$
$$\hat{P}_{\text{SML}} = A^{\dagger}(\theta) \left(\hat{R} - \hat{\nu}_{\text{SML}} I_M \right) A^{\dagger \mathsf{H}}(\theta)$$

Inserting $\hat{\nu}_{\text{SML}}$ and \hat{P}_{SML} back and minimizing w.r.t. θ yields

$$\hat{\boldsymbol{\theta}}_{\text{SML}} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \det \Big(\boldsymbol{\Pi}_{\boldsymbol{A}(\boldsymbol{\theta})} \hat{\boldsymbol{R}} \boldsymbol{\Pi}_{\boldsymbol{A}(\boldsymbol{\theta})} + \underbrace{\frac{1}{\underline{M-N}} \text{Tr}\left(\boldsymbol{\Pi}_{\boldsymbol{A}(\boldsymbol{\theta})}^{\perp} \hat{\boldsymbol{R}}\right)}_{\hat{\boldsymbol{\nu}}_{\text{SML}}} \boldsymbol{\Pi}_{\boldsymbol{A}(\boldsymbol{\theta})}^{\perp} \Big).$$

Eigendecomposition of the receive covariance matrix

$$\mathbf{R} = \mathbf{E} \mathbf{x}(t) \mathbf{x}^{\mathsf{H}}(t) = \mathbf{A}(\boldsymbol{\theta}) \mathbf{P} \mathbf{A}^{\mathsf{H}}(\boldsymbol{\theta}) + \nu \mathbf{I}_{M}$$
$$= \sum_{m=1}^{M} \lambda_{m} \mathbf{u}_{m} \mathbf{u}_{m}^{\mathsf{H}}$$

where $\lambda_1 \ge \lambda_2 \ldots \ge \lambda_M \in \mathbb{R}_+$ are sorted eigenvalues of \mathbf{R} . From the eigenanalysis of \mathbf{R} we obtain that:

$$\lambda_m > \nu, \quad m = 1, \dots, N$$

 $\lambda_m = \nu, \quad m = N + 1, \dots, M$

signal subspace eigenvalues noise subspace eigenvalues

with corresponding eigenvectors:

$u_1,\ldots,$	$\boldsymbol{u}_N,$	signal eigenvectors
$\boldsymbol{\mu}_{N+1},\ldots,$	u_M	noise eigenvectors.

Eigendecomposition in compact matrix notation:

$$oldsymbol{R} = oldsymbol{U} oldsymbol{\Lambda} oldsymbol{U}^{\mathsf{H}} = oldsymbol{U}_{\mathsf{s}} oldsymbol{\Lambda}_{\mathsf{s}} oldsymbol{U}^{\mathsf{H}}_{\mathsf{s}} + oldsymbol{U}_{\mathsf{n}} oldsymbol{\Lambda}_{\mathsf{n}} oldsymbol{U}^{\mathsf{H}}_{\mathsf{n}}$$

where we define

$$U_{s} = [u_{1}, \dots, u_{N}] \in \mathbb{C}^{M \times N}$$
$$U_{n} = [u_{N+1}, \dots, u_{M}] \in \mathbb{C}^{M \times (M-N)}$$
$$\Lambda_{s} = \operatorname{diag}(\lambda_{1}, \dots, \lambda_{N}) \in \mathbb{S}^{N \times N}_{+}$$
$$\Lambda_{n} = \nu I_{M-N} \in \mathbb{S}^{(M-N) \times (M-N)}_{+}$$

and

$$oldsymbol{U} = [oldsymbol{U}_s, oldsymbol{U}_n] \in \mathbb{C}^{M imes M}$$

 $oldsymbol{\Lambda} = ext{blkdiag} (oldsymbol{\Lambda}_s, oldsymbol{\Lambda}_n) \in \mathbb{S}^{M imes M}_+$

signal eigenvector matrix noise eigenvector matrix diagonal matrix of signal eigenvalues diagonal matrix of noise eigenvalues

unitary matrix of eigenvectors diagonal matrix of eigenvalues.

- \boldsymbol{U} is unitary, i.e. $\boldsymbol{U}^{\mathsf{H}}\boldsymbol{U} = \boldsymbol{I}_{M}$.
- The columns of the signal subspace eigenvectors U_s span the signal subspace, i.e., the range space spanned by the columns of the steering matrix A(θ) at the true DOAs θ, hence

$$\mathcal{R}(\boldsymbol{U}_{s}) = \mathcal{R}(\boldsymbol{A}(\boldsymbol{\theta})).$$

- There exists a non-singular matrix $K \in \mathbb{C}^{N \times N}$ such that $U_s = A(\theta)K$.
- The columns of the noise subspace eigenvectors U_n span the noise-space, i.e., the null-space of the Hermitian of the true steering matrix $A(\theta)$

$$\mathcal{R}(\boldsymbol{U}_n) = \mathcal{N}(\boldsymbol{A}^{\mathsf{H}}(\boldsymbol{\theta})).$$

Hence, the columns of the noise subspace eigenvectors U_n are orthogonal to the column-space of the true steering matrix A(θ), i.e.,

$$\boldsymbol{U}_{n}^{\mathsf{H}}\boldsymbol{A}(\boldsymbol{\theta}) = \boldsymbol{0}_{(M-N)\times N}.$$

The eigendecomposition of the finite sample covariance matrix \hat{R} is given by:

$$\hat{\boldsymbol{R}} = \hat{\boldsymbol{U}}\hat{\boldsymbol{\Lambda}}\hat{\boldsymbol{U}}^{\mathsf{H}} = \hat{\boldsymbol{U}}_{\mathsf{s}}\hat{\boldsymbol{\Lambda}}_{\mathsf{s}}\hat{\boldsymbol{U}}_{\mathsf{s}}^{\mathsf{H}} + \hat{\boldsymbol{U}}_{\mathsf{n}}\boldsymbol{\Lambda}_{\mathsf{n}}\hat{\boldsymbol{U}}_{\mathsf{n}}^{\mathsf{H}}$$

where we define for $\hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \ldots \geq \hat{\lambda}_M$

$$\begin{split} \hat{\boldsymbol{U}}_{s} &= [\hat{\boldsymbol{u}}_{1}, \dots, \hat{\boldsymbol{u}}_{N}] \in \mathbb{C}^{M \times N} \\ \hat{\boldsymbol{U}}_{n} &= [\hat{\boldsymbol{u}}_{N+1}, \dots, \hat{\boldsymbol{u}}_{M}] \in \mathbb{C}^{M \times (M-N)} \\ \hat{\boldsymbol{\Lambda}}_{s} &= \operatorname{diag}(\hat{\lambda}_{1}, \dots, \hat{\lambda}_{N}) \in \mathbb{S}^{N \times N}_{+} \\ \hat{\boldsymbol{\Lambda}}_{n} &= \operatorname{diag}(\hat{\lambda}_{N+1}, \dots, \hat{\lambda}_{M}) \in \mathbb{S}^{(M-N) \times (M-N)}_{+} \end{split}$$

sample signal eigenvector matrix sample noise eigenvector matrix sample signal eigenvalues sample noise eigenvalues

and

$$egin{aligned} \hat{m{U}} &= \left[\hat{m{U}}_{ ext{s}}, \hat{m{U}}_{ ext{n}}
ight] \in \mathbb{C}^{M imes M} \ \hat{m{\Lambda}} &= ext{blkdiag} \left(\hat{m{\Lambda}}_{ ext{s}}, \hat{m{\Lambda}}_{ ext{n}}
ight) \in \mathbb{S}^{M imes M}_+ \end{aligned}$$

unitary matrix of eigenvectors

diagonal matrix of eigenvalues.

The DML cost function

$$f_{\text{DML}}(\boldsymbol{\theta}) = \text{Tr} \left(\boldsymbol{\Pi}_{\boldsymbol{A}(\boldsymbol{\theta})}^{\perp} \hat{\boldsymbol{R}} \right)$$

is equivalently obtained from minimizing the Least-Squares fitting problem w.r.t. to the fitting matrix *S*:

$$f_{\text{LS}}(\boldsymbol{\theta}, \boldsymbol{S}) = \|\boldsymbol{X} - \boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{S}\|_{\text{F}}^2.$$

The minimization yields the LS estimate

$$\hat{\boldsymbol{S}}_{\text{LS}} = \left(\boldsymbol{A}^{\text{H}}(\boldsymbol{ heta})\boldsymbol{A}(\boldsymbol{ heta})\right)^{-1}\boldsymbol{A}^{\text{H}}(\boldsymbol{ heta})\boldsymbol{X} = \boldsymbol{A}^{\dagger}(\boldsymbol{ heta})\boldsymbol{X}$$

which, if substituted back in the LS function yields the DML function above.

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 40

The LS fitting problem can be generalized. A general data matrix M (as some transformation of the data X) can be used instead of X.

Examples are $M = \hat{U}_s$ and $M = \hat{U}_s \hat{\Lambda}_s^{\frac{1}{2}}$ or most generally

$$\boldsymbol{M} = \hat{\boldsymbol{U}}_{\mathrm{s}} \boldsymbol{W}^{\frac{1}{2}}$$

for arbitrary weighting matrix *W*.

The corresponding weighted subspace fitting (WSF) problem becomes [Viberg'91],[Ottersten'90],[Stoica'90]

$$f_{\text{WSF}}(\boldsymbol{\theta}, \boldsymbol{F}) = \|\boldsymbol{M} - \boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{F}\|_{\text{F}}^2$$

or after concentration w.r.t. F with $\hat{F}_{\text{WSF}} = A^{\dagger}(\theta)M$

$$f_{\text{WSF}}(\boldsymbol{\theta}) = \text{Tr}\big(\boldsymbol{\Pi}_{\boldsymbol{A}(\boldsymbol{\theta})}^{\perp} \hat{\boldsymbol{U}}_{s} \boldsymbol{W} \hat{\boldsymbol{U}}_{s}^{\mathsf{H}}\big).$$

The WSF estimates for the DOAs θ are obtained as

$$\hat{\boldsymbol{\theta}}_{\mathrm{WSF}} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \mathrm{Tr} \big(\Pi_{\boldsymbol{A}(\boldsymbol{\theta})}^{\perp} \hat{\boldsymbol{U}}_{\mathrm{s}} \boldsymbol{W} \hat{\boldsymbol{U}}_{\mathrm{s}}^{\mathsf{H}} \big).$$

- The minimization of the WSF cost function cannot be carried out in closed-form and generally requires multi-dimensional search.
- Similarly to the multi-dimensional ML methods, the complexity associated with the minimization becomes prohibitive if the number of source N > 3.
- The choice of the weighting matrix as

$$\boldsymbol{W}_{\mathrm{ao}} = \left(\hat{\boldsymbol{\Lambda}}_{\mathrm{s}} - \hat{\nu}_{\mathrm{w}}\boldsymbol{I}_{N}\right)^{2}\hat{\boldsymbol{\Lambda}}_{\mathrm{s}}^{-1} ext{ for } \hat{\nu}_{\mathrm{w}} = rac{1}{M-N}\mathrm{Tr}(\hat{\boldsymbol{\Lambda}}_{\mathrm{n}})$$

is asymptotically (for large *T*) optimal in terms of the Mean-Squared-Error (MSE) of DOA estimates which achieves the CRB under the stochastic model.

Optimal Parametric Methods Covariance Matching Estimation Techniques

Recall the Covariance Matrix **R**

$$\boldsymbol{R} = \boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{P}\boldsymbol{A}^{\mathsf{H}}(\boldsymbol{\theta}) + \boldsymbol{\nu}\boldsymbol{I}$$

Formulation of Covariance Matching Estimation Techniques (COMET) [Ottersten'98]

$$\hat{A}_{\text{COMET}} = \underset{A(\theta) \in \mathcal{A}_N}{\operatorname{arg\,min}} \min_{P \succeq 0, \nu \ge 0} \left\| W \operatorname{vec} \left(\hat{R} - A(\theta) P A^{\mathsf{H}}(\theta) - \nu I \right) \right\|_{\mathsf{F}}^2$$

where $\boldsymbol{W} \in \mathbb{C}^{M^2 \times M^2}$ is a proper weighting matrix, e.g., $\boldsymbol{W} = \boldsymbol{I}$.

Asymptotically Optimal Weighting Matrix

The MSE of COMET is asymptotically equal to the Stochastic Cramér-Rao bound if the weighting matrix *W* is chosen as

$$\boldsymbol{W} = \hat{\boldsymbol{W}}_{\text{asymp}} = \left(\hat{\boldsymbol{R}}^{\mathsf{T}} \otimes \hat{\boldsymbol{R}}\right)^{-1/2}$$

Optimal Parametric Methods Covariance Matching Estimation Techniques

Observation

$$\operatorname{vec}(\boldsymbol{R}) = \operatorname{vec}\left(\boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{P}\boldsymbol{A}^{\mathsf{H}}(\boldsymbol{\theta}) + \nu\boldsymbol{I}\right)$$
$$= \boldsymbol{\Phi}(\boldsymbol{\theta})\boldsymbol{\gamma}$$

Φ ∈ C^{M²×(N²+1)} is full-rank matrix depending on the steering matrix A(θ).
 γ ∈ R^{(N²+1)×1} contains the noise power ν and real-valued entries which characterize the elements on the source covariance matrix P.

Relaxed Formulation of COMET

$$\begin{split} \hat{\boldsymbol{\theta}}_{\text{COMET}} &= \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \Theta^{N}} \, \min_{\boldsymbol{\gamma} \in \mathbb{C}^{(N^{2}+1) \times 1}} \, \left\| \left| \boldsymbol{W} \operatorname{vec} \left(\hat{\boldsymbol{R}} \right) - \boldsymbol{W} \boldsymbol{\Phi} \left(\boldsymbol{\theta} \right) \boldsymbol{\gamma} \right\|_{\text{F}}^{2} \\ &= \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \Theta^{N}} \operatorname{vec} \left(\hat{\boldsymbol{R}} \right)^{\mathsf{H}} \boldsymbol{W}^{\mathsf{H}} \, \boldsymbol{\Pi}_{\boldsymbol{W} \boldsymbol{\Phi} \left(\boldsymbol{\theta} \right)}^{\perp} \, \boldsymbol{W} \operatorname{vec} \left(\hat{\boldsymbol{R}} \right) \end{split}$$

Optimal Parametric Methods Simulation Results

Uncorrelated Source Signals

$$M = 5, \ \theta = [90^{\circ}, 100^{\circ}]^{\mathsf{T}}, \ T = 200, \ \rho = 0$$

Optimal Parametric Methods Simulation Results

Correlated Source Signals

$$M = 5, \ \boldsymbol{\theta} = [90^{\circ}, 100^{\circ}]^{\mathsf{T}}, \ T = 200, \ \rho = 0.99$$

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 46

Table of Contents			
Introduction to Direction-of-Arrival (DoA) Estimation			
Motivation	_		
 Conventional Signal Model 	Part I		
Revision of DOA Estimators			
 Optimal Parametric Methods 			
Approximation/Relaxation Concept and its Application	Part II		
 Spectral-based Techniques 			
 Relaxation Based on Geometry Exploitation 	Dort III		
Sparse Reconstruction Methods	Part III		
 Majorization-Minimization Asymptotic Performance Bound Conventional Cramér-Rao Bound Partially-relaxed Cramér-Rao Bound 	Part IV		

Table of Contents

Introduction to Direction-of-Arrival (DoA) Estimation

- Motivation
- Conventional Signal Model
- **Revision of DOA Estimators**
 - Optimal Parametric Methods

Approximation/Relaxation Concept and its Application

- Spectral-based Techniques
- Relaxation Based on Geometry Exploitation
- Sparse Reconstruction Methods
- Majorization-Minimization

Asymptotic Performance Bound

- Conventional Cramér-Rao Bound
- Partially-relaxed Cramér-Rao Bound

Approximation/Relaxation Concept Motivation

General Formulation of Parametric DOA Estimation

$$\boldsymbol{A}(\hat{\boldsymbol{\theta}}) = \operatorname*{arg\,min}_{\boldsymbol{A}(\boldsymbol{\theta}) \in \mathcal{A}_{N}} f\left(\boldsymbol{A}\left(\boldsymbol{\theta}\right)\right)$$

- Different choices on the cost function $f(\cdot)$ leads to different estimators.
- Prohibitively expensive computational cost to obtain the global minimum.

Adoption of Approximation/Relaxation Techniques required!

Relaxation/Restriction of the feasible set

...

Successive approximation of the cost function

Approximation/Relaxation Concept Motivation

Potential Approaches

- Back-projection is generally required after the relaxation step.
- Possible combination of both relaxation and approximation.

Approximation/Relaxation Concept Approximation

Approximation/Relaxation Concept Relaxation

Approximation/Relaxation Concept Relaxation

Concept of Relaxation-and-Projection Method

1. Replace the original array manifold A_N by a relaxed manifold $\bar{A}_N \supset A_N$

$$\hat{A} = \operatorname*{arg\,min}_{A \in \mathcal{A}_N} f(A) \longrightarrow \hat{A}_{\mathrm{relaxed}} = \operatorname*{arg\,min}_{A \in \bar{\mathcal{A}}_N} f(A).$$

2. Project the relaxed estimate $\hat{A}_{relaxed}$ back to the original array manifold \mathcal{A}_N .

Remarks

- The choice on the relaxed array manifold \bar{A}_N generally depends on the underlying structure of the sensor array.
- Relaxation-and-Projection may, in particular cases, preserve optimality, e.g., in the Extended Invariance Principle (EXIP) [Stoica'89-2].

Table of Contents

Introduction to Direction-of-Arrival (DoA) Estimation

- Motivation
- Conventional Signal Model

Revision of DOA Estimators

- Optimal Parametric Methods
- Approximation/Relaxation Concept and its Application
 - Spectral-based Techniques
 - Single-source Approximation Techniques
 - Partial Relaxation Framework
 - Relaxation Based on Geometry Exploitation
 - Sparse Reconstruction Methods
 - Majorization-Minimization

Suboptimal solutions of the DOA estimation problem can be obtained by adopting the Single-source Approximation.

Recall the General DOA Estimation Problem

$$oldsymbol{A}ig(\hat{oldsymbol{ heta}}ig) = rgmin_{oldsymbol{A}ig(oldsymbol{A}(oldsymbol{ heta}))}{Aig(oldsymbol{ heta}ig)\in\mathcal{A}_N} f\left(oldsymbol{A}ig(oldsymbol{ heta})
ight)$$

Single-source Approximation

Spectral sweep to find the *N* deepest local minima $\hat{\boldsymbol{\theta}} = \left[\hat{\theta}_1, \dots, \hat{\theta}_N\right]^T$ of $f(\boldsymbol{a}(\theta))$

$$\boldsymbol{A}(\hat{\boldsymbol{\theta}}) = \operatorname{arg\,min}_{\boldsymbol{a}(\theta) \in \mathcal{A}_1} f(\boldsymbol{a}(\theta)).$$

Interpretation: The cost function measures the goodness-of-fit under the assumption of only one source signal located at the candidate DOA $\theta \in \Theta$.

Single-source Approximation Techniques Conventional Beamformer

Original Derivation

Output power of the receive signal *x*(*t*) after spatial filtering with the beamforming vector *w*(θ)

$$P(\theta) = \mathbb{E}\left\{\left|\boldsymbol{w}^{\mathsf{H}}(\theta)\boldsymbol{x}(t)\right|^{2}\right\}$$
$$= \boldsymbol{w}^{\mathsf{H}}(\theta)\boldsymbol{R}\boldsymbol{w}(\theta).$$

• In practice, the true covariance matrix **R** of the receive signal $\mathbf{x}(t)$ is not available and therefore replaced by the sample covariance matrix $\hat{\mathbf{R}}$

$$\hat{P}(\theta) = \frac{1}{T} \sum_{t=1}^{T} |\boldsymbol{w}^{\mathsf{H}}(\theta)\boldsymbol{x}(t)|^{2}$$
$$= \boldsymbol{w}^{\mathsf{H}}(\theta)\hat{\boldsymbol{R}}\boldsymbol{w}(\theta).$$

Single-source Approximation Techniques Conventional Beamformer

Beamformer Vector

$$w_{ ext{CBF}}(heta) = rac{oldsymbol{a}(heta)}{||oldsymbol{a}(heta)||}$$

Conventional Beamforming Estimator [Bartlett'48] Find the *N* highest local maxima of the beamformer spectrum

$$\hat{P}_{\text{CBF}}(\theta) = rac{oldsymbol{a}^{\mathsf{H}}(heta)\hat{oldsymbol{R}}oldsymbol{a}(heta)}{\left|\left|oldsymbol{a}(heta)
ight|
ight|^2}$$

Interpretation

• $w_{\text{CBF}}(\theta)$ can be considered as a spatially matched filter that maximizes the power impinging on the sensor array from the direction θ .

Single-source Approximation Techniques Conventional Beamformer

Alternative Derivation: Starting from the Covariance Matrix **R**

$$\mathbf{R} = \mathbf{A}\mathbf{P}\mathbf{A}^{\mathsf{H}} + \nu\mathbf{I}$$

Single-source approximation of Covariance Fitting Problem

$$\hat{\sigma}_{s}^{2} = \arg\min_{\sigma_{s}^{2}} \left\| \hat{\boldsymbol{R}} - \sigma_{s}^{2}\boldsymbol{a}\boldsymbol{a}^{\mathsf{H}} \right\|_{\mathsf{F}}^{2}$$
$$= \frac{\boldsymbol{a}^{\mathsf{H}}\hat{\boldsymbol{R}}\boldsymbol{a}}{(\boldsymbol{a}^{\mathsf{H}}\boldsymbol{a})^{2}}$$

- Conventional beamformer spectrum measures the power impinging at the sensor array from the direction $a = a(\theta)$.
- Disadvantage: limited angular resolution.

Single-source Approximation Techniques Capon Beamformer

Design of the Capon beamformer

For each direction $\mathbf{a} = \mathbf{a}(\theta)$, find the beamformer vector $\mathbf{w} = \mathbf{w}(\theta)$ such that

- the power from the direction *a* is maintained
- the power from remaining directions is suppressed as much as possible.

Optimization Problem

 $\min_{w} w^{\mathsf{H}} \hat{R} w$ subject to $w^{\mathsf{H}} a = 1$

Also known as Minimum Variance Distortionless Response beamformer.

• Optimal beamformer vector
$$w_{\text{Capon}} = \frac{\hat{R}^{-1}a}{a^{H}\hat{R}^{-1}a}$$
.

Single-source Approximation Techniques Capon Beamformer

Capon spectrum [Capon'66]

$$\hat{P}_{\text{Capon}}(\theta) = \boldsymbol{w}_{\text{Capon}}^{\mathsf{H}}(\theta)\hat{\boldsymbol{R}}\boldsymbol{w}_{\text{Capon}}(\theta)$$

$$= \frac{1}{\boldsymbol{a}^{\mathsf{H}}(\theta)\hat{\boldsymbol{R}}^{-1}\boldsymbol{a}(\theta)}$$

- Estimate the DOAs $\hat{\theta}$ from the *N* highest peaks of $\hat{P}_{Capon}(\theta)$.
- Higher resolution capability than the conventional beamformer.
- Applicable if the sample covariance matrix \hat{R} is full rank.
- Values of Capon peaks are roughly proportional to the signal power of the sources.

Single-source Approximation Techniques Capon Beamformer

Recall the Conventional Beamfomer

$$\hat{\sigma}_{s}^{2} = \operatorname*{argmin}_{\sigma_{s}^{2}} \left| \left| \hat{\boldsymbol{R}} - \sigma_{s}^{2} \boldsymbol{a} \boldsymbol{a}^{\mathsf{H}} \right| \right|_{\mathsf{F}}^{2}$$

Alternative Formulation of the Capon Spectrum

$$\hat{\sigma}_{s}^{2} = \underset{\sigma_{s}^{2}}{\operatorname{arg\,min}} \left\| \hat{\boldsymbol{R}} - \sigma_{s}^{2}\boldsymbol{a}\boldsymbol{a}^{\mathsf{H}} \right\|_{\mathsf{F}}^{2}$$

subject to $\hat{\boldsymbol{R}} - \sigma_{s}^{2}\boldsymbol{a}\boldsymbol{a}^{\mathsf{H}} \succeq \boldsymbol{0}$

Remarks

- Both formulations are based on covariance fitting criteria under single-source approximation.
- Constraint in the Capon formulation prevents the residual matrix to be indefinite.

Single-source Approximation Techniques MUSIC

Recall the Eigendecomposition of the Covariance Matrix R

$$\mathbf{R} = \mathbf{A}\mathbf{P}\mathbf{A}^{\mathsf{H}} + \nu \mathbf{I} = \mathbf{U}_{\mathsf{s}} \mathbf{\Lambda}_{\mathsf{s}} \mathbf{U}_{\mathsf{s}}^{\mathsf{H}} + \nu \mathbf{U}_{\mathsf{n}} \mathbf{U}_{\mathsf{n}}^{\mathsf{H}}$$

• Assumption: Non-coherent source signals.

• Key observation: $U_n^{\mathsf{H}} a(\theta) = \mathbf{0}$ iff θ coincides with one of the true DOAs θ .

MUSIC Pseudo-spectrum [Schmidt'79]

$$\hat{P}_{\text{MUSIC}}(\theta) = \frac{1}{\left|\left|\hat{\boldsymbol{U}}_{n}^{\mathsf{H}}\boldsymbol{a}(\theta)\right|\right|_{2}^{2}} = \frac{1}{\boldsymbol{a}^{\mathsf{H}}(\theta)\hat{\boldsymbol{U}}_{n}\hat{\boldsymbol{U}}_{n}^{\mathsf{H}}\boldsymbol{a}(\theta)}$$

 MUSIC pseudo-spectrum is inversely proportional to the distance between the steering vector *a*(θ) and the sample noise subspace span(*U*_n).

Single-source Approximation Techniques MUSIC

Recall the WSF Estimator [Viberg'91]

$$\hat{m{A}} = \mathop{\mathrm{arg\,min}}_{m{A}\in\mathcal{A}_N} \mathop{\mathrm{min}}_{m{F}} \; \left|\left|\hat{m{U}}_{\mathrm{s}} - m{A}m{F}
ight|\right|_{\mathrm{F}}^2$$

MUSIC Null-spectrum

$$f_{\text{MUSIC}}(\theta) = \boldsymbol{a}^{\mathsf{H}}(\theta) \hat{\boldsymbol{U}}_{n} \hat{\boldsymbol{U}}_{n}^{\mathsf{H}} \boldsymbol{a}(\theta)$$

Alternative Interpretation

$$f_{ ext{MUSIC}}(heta) \propto \min_{oldsymbol{f}} \left| \left| \hat{oldsymbol{U}}_{ ext{s}} - oldsymbol{a}(heta) oldsymbol{f}^{\mathsf{T}}
ight|
ight|_{ ext{F}}^2$$

 MUSIC can be considered as a single-source approximation of WSF with identity weighting.

Formulation of the Multi-dimensional Search

$$\left\{ \hat{\boldsymbol{A}} \right\} = \operatorname*{arg\,min}_{\boldsymbol{A}\in\mathcal{A}_{N}} f\left(\boldsymbol{A}\right)$$

Relaxed Array Manifold

$$\bar{\mathcal{A}}_N = \left\{ \boldsymbol{A} \in \mathbb{C}^{M \times N} \mid \boldsymbol{A} = \left[\boldsymbol{a}(\theta), \boldsymbol{B} \right], \boldsymbol{B} \in \mathbb{C}^{M \times (N-1)} \text{ and } \operatorname{rank}\left(\boldsymbol{A} \right) = N \right\}$$

Formulation of the Multi-dimensional Search

$$\left\{ \hat{\boldsymbol{A}} \right\} = \operatorname*{arg\,min}_{\boldsymbol{A} \in \mathcal{A}_{N}} f\left(\boldsymbol{A} \right)$$

Relaxed Array Manifold

$$\bar{\mathcal{A}}_N = \left\{ \boldsymbol{A} \in \mathbb{C}^{M \times N} \mid \boldsymbol{A} = \left[\boldsymbol{a}(\theta), \boldsymbol{B} \right], \boldsymbol{B} \in \mathbb{C}^{M \times (N-1)} \text{ and } \operatorname{rank}\left(\boldsymbol{A} \right) = N \right\}$$

Formulation of Partial Relaxation (PR) Framework [Trinh-Hoang'18]

$$\{\hat{\boldsymbol{a}}_{\text{PR}}\} = {}^{N} \underset{\boldsymbol{a} \in \mathcal{A}_{1}}{\operatorname{arg\,min}} \underset{\boldsymbol{B} \in \mathbb{C}^{M \times (N-1)}}{\operatorname{min}} f\left([\boldsymbol{a}, \boldsymbol{B}]\right)$$

- Compute the null-spectrum $f_{PR}(\theta) = \min_{\boldsymbol{B} \in \mathbb{C}^{M \times (N-1)}} f([\boldsymbol{a}(\theta), \boldsymbol{B}]).$
- *N*-deepest local minimizers of $f_{PR}(\theta)$ are the DOA estimates.

 $[a(\theta), B]$

Relax the manifold structure of the signals from "interfering" directions.Generally lower complexity than multi-dimensional search.

Recall the DML estimator

$$\left\{ \hat{A}_{ ext{DML}}
ight\} = rgmin_{A \in \mathcal{A}_N} ext{Tr} \left(\Pi_A^{\perp} \hat{R}
ight)$$

Partially-relaxed (PR) Formulation

$$\begin{aligned} \{\hat{a}_{\text{PR-DML}}\} &= {}^{N} \mathop{\arg\min}_{a \in \mathcal{A}_{1}} \mathop{\min}_{B \in \mathbb{C}^{M \times (N-1)}} \operatorname{Tr}\left(\Pi_{[a,B]}^{\perp} \hat{R}\right) \\ &= {}^{N} \mathop{\arg\min}_{a \in \mathcal{A}_{1}} \mathop{\min}_{B \in \mathbb{C}^{M \times (N-1)}} \operatorname{Tr}\left(\Pi_{a}^{\perp} \hat{R}\right) - \operatorname{Tr}\left(\Pi_{\Pi_{a}^{\perp} B} \hat{R}\right) \end{aligned}$$

Null-spectrum of the PR-DML Estimator with $\boldsymbol{a} = \boldsymbol{a}(\theta)$ $f_{\text{PR-DML}}(\theta) = \text{Tr}\left(\boldsymbol{\Pi}_{\boldsymbol{a}}^{\perp}\hat{\boldsymbol{R}}\right) - \max_{\boldsymbol{B} \in \mathbb{C}^{M \times (N-1)}} \text{Tr}\left(\boldsymbol{\Pi}_{\boldsymbol{\Pi}_{\boldsymbol{a}}^{\perp}\boldsymbol{B}}\hat{\boldsymbol{R}}\right)$

New Optimization Problem

$$\max_{\boldsymbol{B}\in\mathbb{C}^{M\times(N-1)}}\operatorname{Tr}\left(\boldsymbol{\Pi}_{\boldsymbol{\Pi}_{\boldsymbol{a}}^{\perp}\boldsymbol{B}}\hat{\boldsymbol{R}}\right)$$

Eigenvalue Decomposition of $\Pi_{\Pi_a^{\perp}B}$

$$\mathbf{\Pi}_{\mathbf{\Pi}_{a}^{\perp}B} = \mathbf{Z}\mathbf{Z}^{\mathsf{H}} \text{ with } \mathbf{Z} \in \mathbb{C}^{M \times K}$$

• rank
$$\left(\Pi_{\Pi_a^{\perp} B} \right) = K \leq N - 1$$
 • $\mathbf{Z}^{\mathsf{H}} \mathbf{a} = \mathbf{0}$

Equivalent Reformulation

$$\max_{Z \in \mathbb{C}^{M \times K}} \operatorname{Tr} \left(Z^{\mathsf{H}} \Pi_{a}^{\perp} \hat{R} \Pi_{a}^{\perp} Z \right) = \sum_{k=1}^{N-1} \lambda_{k} (\Pi_{a}^{\perp} \hat{R} \Pi_{a}^{\perp}) = \sum_{k=1}^{N-1} \lambda_{k} (\Pi_{a}^{\perp} \hat{R})$$
subject to $Z^{\mathsf{H}} a = \mathbf{0}$
 $Z^{\mathsf{H}} Z = I$

Null-spectrum of the PR-DML Estimator

$$\begin{split} f_{\text{PR-DML}}(\theta) &= \text{Tr}\left(\boldsymbol{\Pi}_{\boldsymbol{a}(\theta)}^{\perp} \hat{\boldsymbol{R}}\right) - \max_{\boldsymbol{B} \in \mathbb{C}^{M \times (N-1)}} \text{Tr}\left(\boldsymbol{\Pi}_{\boldsymbol{\Pi}_{\boldsymbol{a}(\theta)}^{\perp} \boldsymbol{B}} \hat{\boldsymbol{R}}\right) \\ &= \sum_{k=N}^{M} \lambda_{k} (\boldsymbol{\Pi}_{\boldsymbol{a}(\theta)}^{\perp} \hat{\boldsymbol{R}}) \\ &= \sum_{k=N}^{M} \lambda_{k} \left(\hat{\boldsymbol{R}} - \frac{1}{||\boldsymbol{a}(\theta)||^{2}} \hat{\boldsymbol{R}}^{1/2} \boldsymbol{a}(\theta) \boldsymbol{a}^{\mathsf{H}}(\theta) \hat{\boldsymbol{R}}^{1/2}\right) \end{split}$$

Remarks

- Multiple minimizers for **B**.
- Closed-form expressions for the null-spectrum.
- (M N + 1)- smallest eigenvalues are required.

Alternative Derivation of Null-spectrum of PR-DML

$$f_{\text{PR-DML}}(\theta) = \min_{\boldsymbol{B} \in \mathbb{C}^{M \times (N-1)}} \operatorname{Tr} \left(\boldsymbol{\Pi}_{[\boldsymbol{a}(\theta), \boldsymbol{B}]}^{\perp} \hat{\boldsymbol{R}} \right)$$
$$= \min_{\boldsymbol{B} \in \mathbb{C}^{M \times (N-1)}} \min_{\boldsymbol{s} \in \mathbb{C}^{T \times 1}, \boldsymbol{H} \in \mathbb{C}^{(N-1) \times T}} \frac{1}{T} \left| \left| \boldsymbol{X} - \boldsymbol{a}(\theta) \boldsymbol{s}^{\mathsf{T}} - \boldsymbol{B} \boldsymbol{H} \right| \right|_{\text{F}}^{2}$$

Substitute E = BH and Concentrate with Respect to s

$$\begin{split} f_{\text{PR-DML}}(\theta) &= \min_{\text{rank}(E) \leq N-1} \frac{1}{T} \left| \left| \mathbf{\Pi}_{\boldsymbol{a}(\theta)}^{\perp} \boldsymbol{X} - \mathbf{\Pi}_{\boldsymbol{a}(\theta)}^{\perp} \boldsymbol{E} \right| \right|_{\text{F}}^{2} \\ &= \frac{1}{T} \sum_{k=N}^{M} \sigma_{k}^{2} \left(\mathbf{\Pi}_{\boldsymbol{a}(\theta)}^{\perp} \boldsymbol{X} \right) \\ &= \sum_{k=N}^{M} \lambda_{k} \left(\mathbf{\Pi}_{\boldsymbol{a}(\theta)}^{\perp} \hat{\boldsymbol{R}} \right) \end{split}$$

Partial Relaxation Techniques PR Weighted Subspace Fitting

Recall the WSF estimator

$$\left\{ \hat{A}_{\mathsf{WSF}} \right\} = \mathop{\arg\min}_{A \in \mathcal{A}_{N}} \operatorname{Tr} \left(\Pi_{A}^{\perp} \hat{U}_{s} \boldsymbol{W} \hat{U}_{s}^{\mathsf{H}} \right)$$

Partially-relaxed (PR) Formulation

$$\{\hat{a}_{\text{PR-WSF}}\} = {}^{N} \underset{a \in \mathcal{A}_{1}}{\arg\min} \min_{B \in \mathbb{C}^{M \times (N-1)}} \operatorname{Tr}\left(\Pi_{[a,B]}^{\perp} \hat{U}_{s} W \hat{U}_{s}^{\mathsf{H}}\right)$$

Null-spectrum of the PR-WSF Estimator

$$f_{\text{PR-WSF}}(\theta) = \lambda_N \left(\boldsymbol{\Pi}_{\boldsymbol{a}(\theta)}^{\perp} \hat{\boldsymbol{U}}_{s} \boldsymbol{W} \hat{\boldsymbol{U}}_{s}^{\mathsf{H}} \right)$$

• Only one eigenvalue required.

• PR-WSF with W = I is equivalent to MUSIC estimator.
Partial Relaxation Techniques PR Constrained Covariance Fitting

Recall the Covariance Matrix R

$$\mathbf{R} = \mathbf{A}\mathbf{P}\mathbf{A}^{\mathsf{H}} + \nu\mathbf{I}$$
$$= \begin{bmatrix} \mathbf{a} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \sigma_{s}^{2} & \boldsymbol{\rho}^{\mathsf{H}} \\ \boldsymbol{\rho} & \mathbf{Q} \end{bmatrix} \begin{bmatrix} \mathbf{a}^{\mathsf{H}} \\ \mathbf{B}^{\mathsf{H}} \end{bmatrix} + \nu\mathbf{I}$$

Formulation of PR-Constrained Covariance Fitting (PR-CCF)

$$\{\hat{a}_{\text{PR-CCF}}\} = {}^{N} \underset{\boldsymbol{a} \in \mathcal{A}_{1}}{\operatorname{arg\,min}} \underset{\boldsymbol{B}, \sigma_{s}^{2} \ge 0, \boldsymbol{Q} \succeq \boldsymbol{0}}{\operatorname{min}} \left\| \left| \hat{\boldsymbol{R}} - \sigma_{s}^{2} \boldsymbol{a} \boldsymbol{a}^{\mathsf{H}} - \boldsymbol{B} \boldsymbol{Q} \boldsymbol{B}^{\mathsf{H}} \right\| \right\|_{\text{F}}^{2}$$

subject to $\hat{\boldsymbol{R}} - \sigma_{s}^{2} \boldsymbol{a} \boldsymbol{a}^{\mathsf{H}} - \boldsymbol{B} \boldsymbol{Q} \boldsymbol{B}^{\mathsf{H}} \succeq \boldsymbol{0}$

Neglect the correlation between source signals.

Replace the noise component with the positive-semidefinite constraint.

Partial Relaxation Techniques PR Constrained Covariance Fitting

Equivalent formulation of the inner optimization

$$\min_{\sigma_s^2 \ge 0} \sum_{k=N}^{M} \lambda_k^2 \left(\hat{\boldsymbol{R}} - \sigma_s^2 \boldsymbol{a} \boldsymbol{a}^{\mathsf{H}} \right)$$

subject to $\hat{\boldsymbol{R}} - \sigma_s^2 \boldsymbol{a} \boldsymbol{a}^{\mathsf{H}} \succeq \boldsymbol{0}$

Closed-form solution for the minimizer $\hat{\sigma}_{\rm s,\ C}^2$

$$\hat{\sigma}^2_{ ext{s, C}} = rac{1}{a^{ extsf{H}} \hat{R}^{-1} a}$$

Null-spectrum of the PR-CCF Estimator

$$f_{\text{PR-CCF}}(\theta) = \sum_{k=N}^{M} \lambda_k^2 \left(\hat{\boldsymbol{R}} - \frac{1}{\boldsymbol{a}^{\mathsf{H}}(\theta) \hat{\boldsymbol{R}}^{-1} \boldsymbol{a}(\theta)} \boldsymbol{a}^{\mathsf{H}}(\theta) \boldsymbol{a}^{\mathsf{H}}(\theta) \right)$$

Partial Relaxation Techniques PR Unconstrained Covariance Fitting

Formulation of PR-Unconstrained Covariance Fitting (PR-UCF)

$$\{\hat{\boldsymbol{a}}_{\text{PR-UCF}}\} = \mathop{^{N}}_{\boldsymbol{a}\in\mathcal{A}_{1}} \min_{\boldsymbol{B},\sigma_{s}^{2}\geq0,\boldsymbol{Q}\succeq\boldsymbol{0}} \left|\left|\hat{\boldsymbol{R}}-\sigma_{s}^{2}\boldsymbol{a}\boldsymbol{a}^{\mathsf{H}}-\boldsymbol{B}\boldsymbol{Q}\boldsymbol{B}^{\mathsf{H}}\right|\right|_{\text{F}}^{2}$$

Null-spectrum of the PR-UCF Estimator with $\boldsymbol{a} = \boldsymbol{a}(\theta)$

$$f_{\text{PR-UCF}}(\theta) = \min_{\sigma_s^2 \ge 0} \sum_{k=N}^{M} \lambda_k^2 \left(\hat{\boldsymbol{R}} - \sigma_s^2 \boldsymbol{a} \boldsymbol{a}^{\mathsf{H}} \right)$$

• No closed-form solution for the minimizer $\hat{\sigma}_{s,U}^2$.

•
$$\bar{\lambda}_k(\sigma_s^2) = \lambda_k \left(\hat{\boldsymbol{R}} - \sigma_s^2 \boldsymbol{a} \boldsymbol{a}^{\mathsf{H}}\right)$$
 is continuously differentiable with respect to σ_s^2
$$\frac{\mathrm{d}\bar{\lambda}_k(\sigma_s^2)}{\mathrm{d}\sigma_s^2} = -\frac{1}{\sigma_s^4 \boldsymbol{a}^{\mathsf{H}} \left(\hat{\boldsymbol{R}} - \bar{\lambda}_k(\sigma_s^2) \boldsymbol{I}_M\right)^{-2} \boldsymbol{a}}.$$

Partial Relaxation Techniques PR Unconstrained Covariance Fitting

Define

$$g(\sigma_{\mathrm{s}}^{2}) = \sum_{k=N}^{M} \lambda_{k}^{2} \left(\hat{\mathbf{R}} - \sigma_{\mathrm{s}}^{2} \mathbf{a} \mathbf{a}^{\mathrm{H}} \right)$$

Objective: Find $\hat{\sigma}_{s,U}^2$ where the derivative $g'(\sigma_s^2)$ vanishes

$$g'(\sigma_s^2) = -\sum_{k=N}^M \frac{2\bar{\lambda}_k(\sigma_s^2)}{\sigma_s^4 a^{\mathsf{H}} \left(\hat{R} - \bar{\lambda}_k(\sigma_s^2) I_M\right)^{-2} a}$$

$$\blacksquare \text{ If } \sigma_s^2 \to 0 \implies g'(\sigma_s^2) < 0$$

$$\blacksquare \text{ If } \sigma_s^2 \to \infty \implies g(\sigma_s^2) \approx \sigma_s^4 ||\boldsymbol{a}||_2^4 \implies g'(\sigma_s^2) > 0$$

Solution: Find an interval where $g'(\sigma_s^2)$ changes sign and perform bisection search

Partial Relaxation Techniques PR Full Covariance Fitting

Formulation of PR-Full Covariance Fitting (PR-FCF)

$$\{\hat{\boldsymbol{a}}_{\text{PR-UCF}}\} = \mathop{^{N}}_{\boldsymbol{a}\in\mathcal{A}_{1}} \mathop{\mathrm{arg\,min}}_{\boldsymbol{B},\sigma_{s}^{2}\geq0,\boldsymbol{Q}\succeq\boldsymbol{0},\nu\geq\boldsymbol{0}} \left|\left|\hat{\boldsymbol{R}}-\sigma_{s}^{2}\boldsymbol{a}\boldsymbol{a}^{\mathsf{H}}-\boldsymbol{B}\boldsymbol{Q}\boldsymbol{B}-\boldsymbol{\nu}\boldsymbol{I}\right|\right|_{\text{F}}^{2}$$

0

Null-spectrum of the PR-FCF Estimator with $\boldsymbol{a} = \boldsymbol{a}(\theta)$

$$f_{\text{PR-FCF}}(\theta) = \min_{\sigma_s^2 \ge 0} \sum_{k=N}^M \lambda_k^2 \left(\hat{\boldsymbol{R}} - \sigma_s^2 \boldsymbol{a} \boldsymbol{a}^{\mathsf{H}} \right) - \frac{\left(\sum_{k=N}^M \lambda_k \left(\hat{\boldsymbol{R}} - \sigma_s^2 \boldsymbol{a} \boldsymbol{a}^{\mathsf{H}} \right) \right)^2}{M - N + 1}$$

- No closed-form solution for the minimizer $\hat{\sigma}_{s, F}^2$.
- Numerical suboptimal solution obtained from Newton's method.

Partial Relaxation Techniques Insights and Relation

Methods	Multi-dimensional Search	Partial Relaxation	Single-source Approximation
Signal Fitting	DML	PR-DML	Conv. Beamformer
Subspace Fitting	WSF	PR-WSF	Weighted MUSIC
Covariance Fitting	Unweighted COMET	PR-CCF PR-UCF PR-FCF	Capon Beamformer Conv. Beamformer

Degraded performance of PR methods in the case of correlated signals.

• Null-spectra of PR methods require the computation of eigenvalues.

Partial Relaxation Techniques Insights and Relation

Explanation of Performance Degradation of PR Methods Case study: Two fully coherent source signals without sensor noise

$$egin{aligned} \mathbf{X} &= oldsymbol{a}(heta_1)oldsymbol{s}^\mathsf{T} + oldsymbol{a}(heta_2)oldsymbol{s}^\mathsf{T} \ &= \Big(oldsymbol{a}(heta_1) + oldsymbol{a}(heta_2)\Big)oldsymbol{s}^\mathsf{T}. \end{aligned}$$

Null-spectrum of the PR-DML estimator for N = 2 source signals

$$f_{\text{PR-DML}}(\theta) = \min_{\boldsymbol{b} \in \mathbb{C}^{M \times 1}} \min_{\boldsymbol{s} \in \mathbb{C}^{T \times 1}, \boldsymbol{h} \in \mathbb{C}^{T \times 1}} \frac{1}{T} \left| \left| \boldsymbol{X} - \boldsymbol{a}(\theta) \boldsymbol{s}^{\mathsf{T}} - \boldsymbol{b} \boldsymbol{h}^{\mathsf{T}} \right| \right|_{\text{F}}^{2}$$

- Cost function is non-negative.
- Perfect match is achieved if $\boldsymbol{b} = \boldsymbol{a}(\theta_1) + \boldsymbol{a}(\theta_2)$ regardless of θ .
- Flat null-spectrum for all look-direction $\theta \implies$ no reliable DOA estimation.

Null-spectrum of the PR-DML Estimator

J

$$f_{\text{PR-DML}}(\theta) = \sum_{k=N}^{M} \lambda_k \left(\hat{\boldsymbol{R}} - \frac{1}{\left| |\boldsymbol{a}| \right|^2} \hat{\boldsymbol{R}}^{1/2} \boldsymbol{a} \boldsymbol{a}^{\mathsf{H}} \hat{\boldsymbol{R}}^{1/2} \right) \text{ with } \boldsymbol{a} = \boldsymbol{a}(\theta)$$

Null-spectrum of the PR-CCF Estimator

$$f_{\text{PR-CCF}}(\theta) = \sum_{k=N}^{M} \lambda_k^2 \left(\hat{R} - rac{1}{a^{\mathsf{H}} \hat{R}^{-1} a} a a^{\mathsf{H}}
ight)$$
 with $a = a(\theta)$

- Dependent on eigenvalues but not on eigenvectors.
- Similar structure of the matrix argument.

Null-spectrum of the PR-CCF Estimator

$$f_{\text{PR-CCF}}(\theta) = \sum_{k=N}^{M} \lambda_k^2 \left(\hat{R} - \frac{1}{a^{\mathsf{H}} \hat{R}^{-1} a} a a^{\mathsf{H}} \right) \text{ with } a = a(\theta)$$

- Dependent on eigenvalues but not on eigenvectors.
- Similar structure of the matrix argument.

Core Numerical Problem: Efficient Computation of Eigenvalues

$$ar{m{d}}_k = \lambda_k \left(m{D} - ar{
ho} m{z} m{z}^{\mathsf{H}}
ight) \, \, ext{with} \,
ho > 0$$

D = diag
$$(d_1, \ldots, d_K) \in \mathbb{R}^{K \times K}$$
 with $d_1 > \ldots > d_K$.
z = $[z_1, \ldots, z_K]^\mathsf{T} \in \mathbb{C}^{K \times 1}$ has no zero entry.

Remarks

- Corresponding to the routine dlaed4() in LAPACK [Anderson'99].
- Applicable to PR estimators using orthogonal transformation.
- Adaptive initialization using previous eigenvalues.
- Reduction in execution time using alternative expressions.

Example: PR-DML Estimator

$$\begin{aligned} \{\hat{\boldsymbol{a}}_{\text{PR-DML}}\} &= {}^{N} \operatorname*{arg\,min}_{\boldsymbol{a}\in\mathcal{A}_{1}} \sum_{k=N}^{M} \lambda_{k} \left(\hat{\boldsymbol{R}} - \frac{1}{\left||\boldsymbol{a}|\right|^{2}} \hat{\boldsymbol{R}}^{1/2} \boldsymbol{a} \boldsymbol{a}^{\mathsf{H}} \hat{\boldsymbol{R}}^{1/2} \right) \\ &= {}^{N} \operatorname*{arg\,min}_{\boldsymbol{a}\in\mathcal{A}_{1}} \operatorname{Tr}\left(\hat{\boldsymbol{R}} \right) - \frac{\boldsymbol{a}^{\mathsf{H}} \hat{\boldsymbol{R}} \boldsymbol{a}}{\boldsymbol{a}^{\mathsf{H}} \boldsymbol{a}} - \sum_{k=1}^{N-1} \lambda_{k} \left(\hat{\boldsymbol{\Lambda}} - \frac{1}{\left||\boldsymbol{a}|\right|_{2}^{2}} \hat{\boldsymbol{\Lambda}}^{1/2} \hat{\boldsymbol{U}}^{\mathsf{H}} \boldsymbol{a} \boldsymbol{a}^{\mathsf{H}} \hat{\boldsymbol{U}} \hat{\boldsymbol{\Lambda}}^{1/2} \right) \end{aligned}$$

Partial Relaxation Techniques Simulation Results

Uncorrelated Source Signals

$$M = 5, \ \theta = [135^{\circ}, 140^{\circ}]^{\circ}, \ T = 150$$

- - T

Partial Relaxation Techniques Simulation Results

Uncorrelated Source Signals

 $M = 5, \ \theta = [135^{\circ}, 140^{\circ}]^{\mathsf{T}}, \ \mathrm{SNR} = 10\mathrm{dB}$

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 84

Table of Contents				
Introduction to Direction-of-Arrival (DoA) Estimation				
 Motivation 				
 Conventional Signal Model 	Part I			
Revision of DOA Estimators				
 Optimal Parametric Methods 				
Approximation/Relaxation Concept and its Application	Part II			
 Spectral-based Techniques 				
Relaxation Based on Geometry Exploitation	Dart III			
 Sparse Reconstruction Methods 	Fait III			
 Majorization-Minimization Asymptotic Performance Bound Conventional Cramér-Rao Bound Partially-relaxed Cramér-Rao Bound 	Part IV			

Table of Contents

Introduction to Direction-of-Arrival (DOA) Estimation

- Motivation
- Conventional Signal Model

Revision of DOA Estimators

- Optimal Parametric Methods
- Approximation/Relaxation Concept and its Application
 - Spectral-based Techniques
 - Relaxation Based on Geometry Exploitation
 - ESPRIT
 - Rank Reduction Algorithm
 - Sparse Reconstruction Methods
 - Majorization-Minimization

Relaxation Based on Geometry Exploitation Shift-Invariant Array

Figure: Antenna array composed of two identical subarrays (subarray 1 in red color) and (subarray 2 in blue color) shifted by baseline Δ .

Figure: The subarray displacement (shift) Δ must be known. $\mathcal{A}_N^{\text{SUB}}$ is the manifold of each subarray.

We assume $\frac{M}{2} \ge N$. Given the steering matrix $\underline{A}(\theta) \in \mathcal{A}_N^{\text{SUB}}$ of the first subarray, the steering matrix $\overline{A}(\theta) \in \mathcal{A}_N^{\text{SUB}}$ of the second subarray can be expressed as

$$\overline{\boldsymbol{A}}(\boldsymbol{\theta}) = \underline{\boldsymbol{A}}(\boldsymbol{\theta})\boldsymbol{D}(\boldsymbol{\theta}), \quad \boldsymbol{D}(\boldsymbol{\theta}) = \operatorname{diag}\left(e^{-j\frac{2\pi}{\lambda}\Delta\cos(\theta_1)}, e^{-j\frac{2\pi}{\lambda}\Delta\cos(\theta_2)}, \cdots, e^{-j\frac{2\pi}{\lambda}\Delta\cos(\theta_N)}\right)$$

The array steering matrix can be decomposed in subarray responses as

$$m{A}(m{ heta}) = \left[egin{array}{c} {m{A}(m{ heta})} \ {m{ar{A}(m{ heta})}} \end{array}
ight] = \left[egin{array}{c} {m{A}(m{ heta})} \ {m{A}(m{ heta}) m{D}(m{ heta})} \end{array}
ight]$$

Similarly, let U_s be partitioned as

$$oldsymbol{U}_{\mathrm{s}} = \left[egin{array}{c} oldsymbol{\underline{U}}_{\mathrm{s}} \ oldsymbol{\overline{U}}_{\mathrm{s}} \end{array}
ight]$$

From an optimization perspective ESPRIT and TLS-ESPRIT can be understood as a subspace matching approach with manifold relaxation.

We consider TLS-ESPRIT: Recall that $A(\theta)$ and U_s span the same space and consider the subspace fitting problem

$$f_{\text{WSF}}(\boldsymbol{\theta}) = \min_{\boldsymbol{A}(\boldsymbol{\theta}) \in \mathcal{A}_N} \min_{\boldsymbol{K} \in \mathbb{C}^{N \times N}} \| \hat{\boldsymbol{U}}_{\text{s}} - \boldsymbol{A}(\boldsymbol{\theta}) \boldsymbol{K} \|_{\mathsf{F}}^2$$

which involves a multi-dimensional multi-modal optimization over the manifold A_N :

$$\mathcal{A}_N = \left\{ oldsymbol{A} \in \mathbb{C}^{M imes N} \middle| ~ \left[egin{array}{c} \underline{oldsymbol{A}}(oldsymbol{artheta}) \ \underline{oldsymbol{A}}(oldsymbol{artheta}) \end{array}
ight], \underline{oldsymbol{A}}(oldsymbol{artheta}) ~ \left[egin{array}{c} \underline{oldsymbol{A}}(oldsymbol{artheta}) \ \underline{oldsymbol{A}}(oldsymbol{artheta}) \end{array}
ight], \underline{oldsymbol{A}}(oldsymbol{artheta}) ~ \left[egin{array}{c} \underline{oldsymbol{A}}(oldsymbol{artheta}) \ \underline{oldsymbol{A}}(oldsymbol{artheta}) \end{array}
ight], \underline{oldsymbol{A}}(oldsymbol{artheta}) ~ oldsymbol{artheta}) \in \Omega^N
ight\}$$

To make the problem tractable the original array manifold A_N is replaced by the relaxed manifold A_N^{ESPRIT}

$$\mathcal{A}_{N}^{\text{ESPRIT}} = \left\{ \boldsymbol{A} \in \mathbb{C}^{M \times N} | \, \boldsymbol{A} = \left[\begin{array}{c} \underline{\boldsymbol{A}} \\ \underline{\boldsymbol{A}} \boldsymbol{D} \end{array} \right], \, \underline{\boldsymbol{A}} \in \mathbb{C}^{\frac{M}{2} \times N}, \boldsymbol{D} \in \mathbb{D}^{N \times N} \right\}$$

where $\underline{A} \in \mathbb{C}^{\frac{M}{2} \times N}$ is an arbitrary complex matrix and D an arbitrary diagonal matrix parameterized as

$$\boldsymbol{D}(\boldsymbol{\vartheta}, \boldsymbol{r}) = \operatorname{diag}\left(r_1 e^{-j\frac{2\pi}{\lambda}\Delta\cos(\vartheta_1)}, r_2 e^{-j\frac{2\pi}{\lambda}\Delta\cos(\vartheta_2)}, \cdots, r_N e^{-j\frac{2\pi}{\lambda}\Delta\cos(\vartheta_N)}\right)$$

with $\boldsymbol{r} = [r_1, r_2, \dots, r_N]^{\mathsf{T}} \in \mathbb{R}_+^N$.

The subspace fitting problem over manifold $\mathcal{A}_N^{\text{ESPRIT}}$ can also be written as the Total Least Squares (TLS) ESPRIT problem:

$$\begin{split} \min_{\boldsymbol{A}\in\mathcal{A}_{N}^{\text{ESPRIT}}} \min_{\boldsymbol{K}\in\mathbb{C}^{N\times N}} \left\| \hat{\boldsymbol{U}}_{s} - \boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{K} \right\|_{\mathsf{F}}^{2} \\ &= \min_{\boldsymbol{D}\in\mathbb{D}^{N\times N}} \min_{\boldsymbol{K}\in\mathbb{C}^{N\times N}} \min_{\underline{\boldsymbol{A}}\in\mathbb{C}^{(M/2)\times N}} \left(\left\| \left[\underline{\hat{\boldsymbol{U}}}_{s}, \boldsymbol{\widehat{\boldsymbol{U}}}_{s} \right] - \underline{\boldsymbol{A}} \left[\boldsymbol{K}, \boldsymbol{D}\boldsymbol{K} \right] \right\|_{\mathsf{F}}^{2} \right) \\ &= \min_{\boldsymbol{D}\in\mathbb{D}^{N\times N}} \min_{\boldsymbol{K}\in\mathbb{C}^{N\times N}} \min_{\underline{\boldsymbol{A}}\in\mathbb{C}^{(M/2)\times N}} \left(\left\| \left[\underline{\hat{\boldsymbol{U}}}_{s}, \boldsymbol{\widehat{\boldsymbol{U}}}_{s} \right] - \left[\underline{\breve{\boldsymbol{U}}}_{s}, \boldsymbol{\overleftarrow{\boldsymbol{U}}}_{s} \right] \right\|_{\mathsf{F}}^{2} \right) \\ &\text{subject to} \quad \underline{\breve{\boldsymbol{U}}}_{s} = \underline{\boldsymbol{A}}\boldsymbol{K} \\ &\quad \boldsymbol{\overleftarrow{\boldsymbol{U}}}_{s} = \boldsymbol{A}\boldsymbol{D}\boldsymbol{K} \end{split}$$

If the source signals are not coherent, i.e., K is an invertible matrix, we can rewrite the previous optimization problem as follows:

$$\begin{split} \min_{\boldsymbol{D}\in\mathbb{D}^{N\times N}} \min_{\boldsymbol{K}\in\mathbb{C}^{N\times N}} \min_{\left[\underline{\breve{\boldsymbol{U}}}_{s}, \overline{\breve{\boldsymbol{U}}}_{s}\right]\in\mathbb{C}^{\frac{M}{2}\times 2N}} \left(\left\| \left[\underline{\hat{\boldsymbol{U}}}_{s}, \widehat{\overline{\boldsymbol{U}}}_{s}\right] - \left[\underline{\breve{\boldsymbol{U}}}_{s}, \overline{\breve{\boldsymbol{U}}}_{s}\right] \right\|_{\mathsf{F}}^{2} \right) \\ & \text{subject to} \quad \boldsymbol{\breve{\overline{\boldsymbol{U}}}}_{s} = \underline{\breve{\boldsymbol{U}}}_{s}\boldsymbol{K}^{-1}\boldsymbol{D}\boldsymbol{K} \\ &= \min_{\boldsymbol{D}\in\mathbb{D}^{N\times N}} \min_{\boldsymbol{K}\in\mathbb{C}^{N\times N}} \min_{\left[\underline{\breve{\boldsymbol{U}}}_{s}, \overline{\breve{\boldsymbol{U}}}_{s}\right]\in\mathbb{C}^{\frac{M}{2}\times 2N}} \left(\left\| \left[\underline{\hat{\boldsymbol{U}}}_{s}, \widehat{\overline{\boldsymbol{U}}}_{s}\right] - \left[\underline{\breve{\boldsymbol{U}}}_{s}, \overline{\breve{\boldsymbol{U}}}_{s}\right] \right\|_{\mathsf{F}}^{2} \right) \\ & \text{subject to} \quad \left[\underline{\breve{\boldsymbol{U}}}_{s}, \overline{\breve{\boldsymbol{U}}}_{s}\right] \left[\begin{array}{c} \boldsymbol{K}^{-1}\boldsymbol{D}\boldsymbol{K} \\ -\boldsymbol{I}_{N} \end{array} \right] = \boldsymbol{0}_{\frac{M}{2}\times N} \end{split}$$

It follows from the constraint that the solution $\left[\underline{\breve{U}}_{s}^{\star}, \overline{\breve{U}}_{s}^{\star}\right]$ of the inner optimization problem satisfies

 $\operatorname{rank}\left(\left[\underline{\breve{\boldsymbol{U}}}_{\mathrm{s}}^{\star}, \overline{\breve{\boldsymbol{U}}}_{\mathrm{s}}^{\star}\right]\right) \leq N$

Consequence

The minimizer $\left[\underline{\breve{U}}_{s}^{\star}, \overline{\breve{U}}_{s}^{\star}\right]$ is the best rank-*N* approximation of $\left[\underline{\hat{U}}_{s}, \overline{\widehat{U}}_{s}\right]$ Defining the Singular Value Decomposition

$$\left[\hat{\underline{U}}_{\mathrm{s}},\hat{\overline{U}}_{\mathrm{s}}
ight]=\sum_{k=1}^{2N}\sigma_{k}\boldsymbol{g}_{k}\boldsymbol{h}_{k}^{\mathsf{H}}$$

with
$$\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_{2N}$$
, the minimizer $\left[\underline{\breve{U}}_s^{\star}, \overline{\breve{U}}_s^{\star} \right]$ is given by $\left[\underline{\breve{U}}_s^{\star}, \overline{\breve{U}}_s^{\star} \right] = \sum_{k=1}^N \sigma_k \mathbf{g}_k \mathbf{h}_k^{\mathsf{H}}.$

• From the constraint $\begin{bmatrix} \underline{\breve{U}}_{s}^{\star}, \underline{\breve{U}}_{s}^{\star} \end{bmatrix} \begin{bmatrix} K^{-1}DK \\ -I_{N} \end{bmatrix} = \mathbf{0}_{\frac{M}{2} \times N} \quad \Rightarrow \quad \hat{\Psi} = K^{-1}DK = \left(\underline{\breve{U}}_{s}^{\star \mathsf{H}}\underline{\breve{U}}_{s}^{\star}\right)^{-1}\underline{\breve{U}}_{s}^{\star \mathsf{H}}\underline{\breve{U}}_{s}^{\star}$

• The eigenvalues of Ψ form the diagonal element of $\hat{D}_{\text{TLS}-\text{ESPRIT}}$.

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 94

To summarize, the TLS-ESPRIT algorithm is carried out in the following steps:

Step 1: Compute the eigendecomposition of the sample covariance matrix \hat{R} and obtain the sample signal-subspace \hat{U}_s and form the partitions \hat{U}_s and \hat{U}_s .

Step 2: Compute the best rank-*N* approximation $\left[\underline{\breve{U}}_{s}^{\star}, \overline{\breve{U}}_{s}^{\star} \right]$. **Step 3**: Compute

$$\hat{\Psi} = (ec{oldsymbol{U}}_{ extsf{s}}^{ imes \mathsf{H}} ec{oldsymbol{U}}_{ extsf{s}}^{ imes})^{-1} ec{oldsymbol{U}}_{ extsf{s}}^{ imes \mathsf{H}} ec{oldsymbol{\mathcal{U}}}_{ extsf{s}}^{ imes} ec{oldsymbol{U}}_{ extsf{s}}^{ imes})^{-1} ec{oldsymbol{U}}_{ extsf{s}}^{ imes \mathsf{H}} ec{oldsymbol{\mathcal{U}}}_{ extsf{s}}^{ imes} ec{oldsymbol{U}}_{ extsf{s}}^{ imes} ec{oldsymbol$$

Step 4: Find the eigenvalues $\lambda_n(\hat{\Psi})$ of $\hat{\Psi}$ and determine DOA estimates as $\hat{\theta}_{n,\text{ESPRIT}} = \arccos\left(-\frac{\lambda}{2\pi\Delta} \arg\left(\lambda_n(\hat{\Psi})\right)\right)$, for $n = 1, \dots, N$.

Recall the Formulation of TLS-ESPRIT

$$\hat{\boldsymbol{\theta}}_{\mathsf{TLS}-\mathsf{ESPRIT}} = \argmin_{\boldsymbol{A}(\boldsymbol{\theta}) \in \mathcal{A}_{N}^{\mathsf{ESPRIT}}} \min_{\boldsymbol{K} \in \mathbb{C}^{N \times N}} \left\| \hat{\boldsymbol{U}}_{\mathsf{s}} - \boldsymbol{A}(\boldsymbol{\theta}) \boldsymbol{K} \right\|_{\mathsf{F}}^{2}$$

Formulation of (conventional) Least Squares (LS-)ESPRIT

$$\hat{\boldsymbol{\theta}}_{\text{ESPRIT}} = \argmin_{\boldsymbol{A}(\boldsymbol{\theta}) \in \mathcal{A}_{N}^{\text{ESPRIT}}} \min_{\boldsymbol{K} \in \mathbb{C}^{N \times N}} \left\| \hat{\boldsymbol{U}}_{s} \boldsymbol{K}^{-1} - \boldsymbol{A}(\boldsymbol{\theta}) \right\|_{\mathsf{F}}^{2}$$

Both LS-ESPRIT and TLS-ESPRIT technique are search-free approaches.The subarray manifold must not be known.

In the ESPRIT algorithm the subarrays can also overlap, such as in the case of ULA:

$$\boldsymbol{A}(\boldsymbol{\theta}) = \begin{bmatrix} 1 & 1 & \dots & 1 \\ e^{-j\frac{2\pi}{\lambda}d\cos(\theta_1)} & e^{-j\frac{2\pi}{\lambda}d\cos(\theta_2)} & \dots & e^{-j\frac{2\pi}{\lambda}d\cos(\theta_N)} \\ \vdots & \vdots & \vdots & \vdots \\ e^{-j\frac{2\pi}{\lambda}(M-1)d\cos(\theta_1)} & e^{-j\frac{2\pi}{\lambda}(M-1)d\cos(\theta_2)} & \dots & e^{-j\frac{2\pi}{\lambda}(M-1)d\cos(\theta_N)} \end{bmatrix}$$

with partition $\overline{A}(\theta)$ and $\underline{A}(\theta)$ denoting the matrices with eliminated first and last row, respectively.

Partition array into P subarrays, with sensor positions

$$d_{\sum_{l=1}^{p-1} M_l + m} = d_m^{(p)} + \Delta^{(p)}$$

- Reverse setup as in ESPRIT:
 - known intra-subarray sensor positions $d_m^{(p)}$ and
 - **unknown** inter-subarray displacements $\Delta^{(p)}$
 - $\underline{d} = [d_1^{\mathsf{T}}, d_2^{\mathsf{T}}, \dots, d_p^{\mathsf{T}}]^{\mathsf{T}}$ with $d_p = [d_1^{(p)}, \dots, d_{M_p}^{(p)}]^{\mathsf{T}}$ where M_p is number of sensors in *p*-th subarray.

The array response of the p-th subarray for a source at DOA θ can be characterized as

$$\boldsymbol{a}_p(\theta) = [1, e^{-j\frac{2\pi}{\lambda}d_p^{(2)}\cos(\theta)}, \dots, e^{-j\frac{2\pi}{\lambda}d_p^{(P)}\cos(\theta)}]^{\mathsf{T}}$$

Let

$$\mathcal{A}_N^{(p)} = \left\{ oldsymbol{A}_p \in \mathbb{C}^{M_p imes N} | oldsymbol{A}_p = [oldsymbol{a}_p(artheta_1), \dots, oldsymbol{a}_p(artheta_N)] ext{ with } artheta_1 < \ldots < artheta_N \in \Theta
ight\}$$

denote the array manifold corresponding to the *p*-th subarray.

The overall array response is then characterized as

$$\boldsymbol{a}(\theta) = [\boldsymbol{a}_{1}^{\mathsf{T}}(\theta), \boldsymbol{e}^{-j\frac{2\pi}{\lambda}\Delta^{(2)}\cos(\theta)}\boldsymbol{a}_{2}^{\mathsf{T}}(\theta), \dots, \boldsymbol{e}^{-j\frac{2\pi}{\lambda}\Delta^{(P)}\cos(\theta)}\boldsymbol{a}_{P}^{\mathsf{T}}(\theta)]^{\mathsf{T}} \\ = \underbrace{\begin{bmatrix} \boldsymbol{a}_{1}(\theta) & \boldsymbol{0}_{M_{1}\times 1} & \cdots & \boldsymbol{0}_{M_{1}\times 1} \\ \boldsymbol{0}_{M_{2}\times 1} & \boldsymbol{a}_{2}(\theta) & \ddots & \vdots \\ \vdots & \ddots & \ddots & \boldsymbol{0}_{M_{P-1}\times 1} \\ \boldsymbol{0}_{M_{P}\times 1} & \cdots & \boldsymbol{0}_{M_{P}\times 1} & \boldsymbol{a}_{P}(\theta) \end{bmatrix}}_{\boldsymbol{T}(\theta)} \underbrace{\begin{bmatrix} \boldsymbol{1} \\ \boldsymbol{e}^{-j\frac{2\pi}{\lambda}\Delta^{(2)}\cos(\theta)} \\ \vdots \\ \boldsymbol{e}^{-j\frac{2\pi}{\lambda}\Delta^{(P)}\cos(\theta)} \end{bmatrix}}_{\boldsymbol{h}(\theta, \boldsymbol{\Delta})}$$

where $\boldsymbol{\Delta} = [\Delta^{(2)}, \dots, \Delta^{(P)}]^{\mathsf{T}} \in \mathbb{R}^{(P-1) \times 1}$.

Defining the block-diagonal subarray responses matrix

$$m{T}(heta) = egin{bmatrix} m{a}_1(heta) & m{0}_{M_1 imes 1} & \cdots & m{0}_{M_1 imes 1} \ m{0}_{M_2 imes 1} & m{a}_2(heta) & \ddots & dots \ dots & dots & \ddots & dots \ dots & dots & \ddots & m{0}_{M_{P-1} imes 1} \ m{0}_{M_P imes 1} & \cdots & m{0}_{M_P imes 1} & m{a}_P(heta) \end{bmatrix}$$

and the reference sensor steering vector

$$m{h}(heta) = \left[1, e^{-jrac{2\pi}{\lambda}\Delta^{(2)}\cos(heta)}, \cdots, e^{-jrac{2\pi}{\lambda}\Delta^{(P)}\cos(heta)}
ight]^{-1}$$

we can factorize the array response vector as

$$\boldsymbol{a}(\boldsymbol{\theta}) = \boldsymbol{T}(\boldsymbol{\theta})\boldsymbol{h}(\boldsymbol{\theta},\boldsymbol{\Delta}).$$

The overall array manifold depends on the subarray displacements vector Δ :

$$egin{aligned} \mathcal{A}_N &= ig\{ oldsymbol{A} = ig[oldsymbol{T}_1 oldsymbol{h}_1, \dots, oldsymbol{T}_N oldsymbol{h}_N ig] \in \mathbb{C}^{M imes N} ig| \ &oldsymbol{T}_n = oldsymbol{T}(artheta_n) \in \mathcal{T}_1, oldsymbol{h}_n = oldsymbol{h}(artheta_n, oldsymbol{\Delta}) \in \mathcal{H}_1 ext{ with } artheta_1 < \ldots < artheta_N \in \Theta ig\} \end{aligned}$$

where

$$\mathcal{T}_1 = \left\{ \boldsymbol{T} \in \mathbb{C}^{M \times P} | \ \boldsymbol{T} = \boldsymbol{T}(\vartheta) \text{ with } \vartheta \in \Theta \right\}$$
$$\mathcal{H}_1 = \left\{ \boldsymbol{h} \in \mathbb{C}^{P \times 1} | \ \boldsymbol{h} = \boldsymbol{h}(\vartheta, \boldsymbol{\Delta}) \text{ with } \vartheta \in \Theta; \ \boldsymbol{\Delta} \in \mathbb{R}^{(P-1) \times 1} \right\}.$$

- Consider first the case of a fully calibrated array, hence the subarray displacements Δ are known.
- In this case the spectral MUSIC estimator introduced above can be applied, hence

$$\{\hat{a}\} = {}^{N} \operatorname*{arg\,min}_{a \in \mathcal{A}_{1}} f_{\text{MUSIC}}(a) = {}^{N} \operatorname*{arg\,min}_{T \in \mathcal{T}_{1}, h \in \mathcal{H}_{1}} f_{\text{MUSIC}}(T, h)$$

with

$$\begin{split} f_{\text{MUSIC}}\left(\boldsymbol{a}\right) &= \boldsymbol{a}^{\mathsf{H}} \hat{\boldsymbol{U}}_{\text{n}} \hat{\boldsymbol{U}}_{\text{n}}^{\mathsf{H}} \boldsymbol{a} \\ f_{\text{MUSIC}}\left(\boldsymbol{T},\boldsymbol{h}\right) &= \boldsymbol{h}^{\mathsf{H}} \boldsymbol{T}^{\mathsf{H}} \hat{\boldsymbol{U}}_{\text{n}} \hat{\boldsymbol{U}}_{\text{n}}^{\mathsf{H}} \boldsymbol{T} \boldsymbol{h}, \end{split}$$

- In the partly calibrated array case the subarray displacements $\Delta \in \mathbb{R}^{(P-1) \times 1}$ are unknown.
- Hence, the reference sensor steering vector *h*(θ, Δ) ∈ H₁ depends on the unknown displacements Δ that must be estimated along with the DOAs θ₁,..., θ_N.
- This requires a prohibitive *P* dimensional parameter search (with ambiguities).
- However, the subarray responses matrix $T(\theta) \in T_1$ is independent of the displacements Δ .

Relaxation Approach

- Relax the manifold structure of the reference sensor steering vector \Rightarrow Replace $h(\theta, \Delta) \in \mathcal{H}_1$ by an unstructured vector $c \in \mathbb{C}^{P \times 1}$ with $||c||_2^2 = ||h||_2^2 = P$
- Maintain the manifold structure of the subarray responses matrix $T(\theta) \in T_1$ Relaxed Array Manifold for Partly Calibrated Array

$$\bar{\mathcal{A}}_N = \left\{ \boldsymbol{A} = [\boldsymbol{T}_1 \boldsymbol{c}_1, \dots, \boldsymbol{T}_N \boldsymbol{c}_N] \left| \boldsymbol{T}_n \in \mathcal{T}_1, ||\boldsymbol{c}_n||_2^2 = P \text{ with } \vartheta_1 < \ldots < \vartheta_N \in \Theta \right\}$$

with $\mathcal{T}_1 = \left\{ \boldsymbol{T} \in \mathbb{C}^{M \times P} | \; \boldsymbol{T} = \boldsymbol{T}(\vartheta) \text{ with } \vartheta \in \Theta \right\}.$

MUSIC Estimator on Relaxed Array Manifold

$$\{\hat{\boldsymbol{a}}\} = {}^{N} \operatorname*{arg\,min}_{\boldsymbol{a}\in\bar{\mathcal{A}}_{1}} f_{\mathrm{MUSIC}}\left(\boldsymbol{a}\right) = {}^{N} \operatorname*{arg\,min}_{\boldsymbol{T}\in\mathcal{T}_{1},\boldsymbol{c}} f_{\mathrm{MUSIC}}\left(\boldsymbol{T},\boldsymbol{c}\right)$$

with

$$f_{\text{MUSIC}}\left(\boldsymbol{a}\right) = \boldsymbol{a}^{\mathsf{H}} \hat{\boldsymbol{U}}_{\mathrm{n}} \hat{\boldsymbol{U}}_{\mathrm{n}}^{\mathsf{H}} \boldsymbol{a} = \boldsymbol{c}^{\mathsf{H}} \boldsymbol{T}^{\mathsf{H}} \hat{\boldsymbol{U}}_{\mathrm{n}} \hat{\boldsymbol{U}}_{\mathrm{n}}^{\mathsf{H}} \boldsymbol{T} \boldsymbol{c}.$$

MUSIC Estimator on Relaxed Array Manifold

$$\{\hat{\boldsymbol{a}}\} = {}^{N} \mathop{\mathrm{arg\,min}}_{\boldsymbol{a}\in\bar{\mathcal{A}}_{1}} f_{\mathrm{MUSIC}}\left(\boldsymbol{a}\right) = {}^{N} \mathop{\mathrm{arg\,min}}_{\boldsymbol{T}\in\mathcal{T}_{1}} \min_{\boldsymbol{c}} f_{\mathrm{MUSIC}}\left(\boldsymbol{T},\boldsymbol{c}\right)$$

with

$$f_{\text{MUSIC}}(\boldsymbol{a}) = \boldsymbol{a}^{\text{H}} \hat{\boldsymbol{U}}_{n} \hat{\boldsymbol{U}}_{n}^{\text{H}} \boldsymbol{a} = \boldsymbol{c}^{\text{H}} \boldsymbol{T}^{\text{H}} \hat{\boldsymbol{U}}_{n} \hat{\boldsymbol{U}}_{n}^{\text{H}} \boldsymbol{T} \boldsymbol{c}.$$

With the relaxation of the reference sensor steering vector manifold the inner optimization problem exhibits a simple solution.

The solution vector c^* corresponds to a minor eigenvector of the matrix

$$\boldsymbol{M}_{\text{RARE}}^{(P)}(\theta) = \boldsymbol{T}^{\mathsf{H}}(\theta) \hat{\boldsymbol{U}}_{n} \hat{\boldsymbol{U}}_{n}^{\mathsf{H}} \boldsymbol{T}(\theta).$$
Relaxation Based on Geometry Exploitation Rank Reduction Algorithm

Hence the RARE estimator corresponds to

$$\left\{\hat{\theta}\right\} = {^N} \mathop{\arg\min}_{\theta \in \Theta} f_{\text{RARE}}(\theta)$$

where the RARE null-spectrum is defined as

$$\begin{split} f_{\text{RARE}}(\theta) &= \lambda_{P} \big(\boldsymbol{M}_{\text{RARE}}^{(P)}(\theta) \big) \\ &= \lambda_{P} \left(\boldsymbol{T}^{\mathsf{H}}(\theta) \hat{\boldsymbol{U}}_{n} \hat{\boldsymbol{U}}_{n}^{\mathsf{H}} \boldsymbol{T}(\theta) \right), \end{split}$$

and $\lambda_P(\boldsymbol{M}_{\text{RARE}}^{(P)}(\theta))$ denotes the minor eigenvalue of the $P \times P$ matrix $\boldsymbol{M}_{\text{RARE}}^{(P)}(\theta)$.

To simplify the evaluation the RARE null-spectrum is often defined as

$$egin{split} f_{ ext{RARE}}(heta) &= \det \left(oldsymbol{M}_{ ext{RARE}}^{(P)}(heta)
ight) \ &= \det \left(oldsymbol{T}^{\mathsf{H}}(heta) \hat{oldsymbol{U}}_{ ext{n}} \hat{oldsymbol{U}}_{ ext{n}}^{\mathsf{H}} oldsymbol{T}(heta)
ight). \end{split}$$

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 108

Relaxation Based on Geometry Exploitation Rank Reduction Algorithm

For P > N it follows from Schur complement that the RARE matrix $M_{RARE}^{(P)}(\theta)$ can be alternatively expressed as

$$\boldsymbol{M}_{\text{RARE}}^{(N)}(\theta) = \boldsymbol{I}_{P} - \hat{\boldsymbol{U}}_{s}^{\mathsf{H}} \boldsymbol{T}(\theta) \boldsymbol{\Omega} \boldsymbol{T}^{\mathsf{H}}(\theta) \hat{\boldsymbol{U}}_{s},$$

for Ω denoting a constant diagonal matrix defined as $\Omega = \left(T^{\mathsf{H}}(\theta)T(\theta)\right)^{-1}$.

In this case the RARE null-spectrum is written as

$$f_{\mathrm{RARE}}(heta) = ig(oldsymbol{M}_{\mathrm{RARE}}^{(N)}(heta) ig) = \lambda_N ig(oldsymbol{I}_N - \hat{oldsymbol{U}}_s^{\mathsf{H}} oldsymbol{T}(heta) oldsymbol{\Omega} oldsymbol{T}^{\mathsf{H}}(heta) \hat{oldsymbol{U}}_s ig),$$

or

$$f_{\mathrm{RARE}}(heta) = \det \left(\boldsymbol{M}_{\mathrm{RARE}}^{(N)}(heta)
ight) = \det \left(\boldsymbol{I}_{N} - \hat{\boldsymbol{U}}_{\mathrm{s}}^{\mathsf{H}} \boldsymbol{T}(heta) \boldsymbol{\Omega} \boldsymbol{T}^{\mathsf{H}}(heta) \hat{\boldsymbol{U}}_{\mathrm{s}}
ight),$$

respectively.

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 109

Table of Contents

Introduction to Direction-of-Arrival (DOA) Estimation

- Motivation
- Conventional Signal Model

Revision of DOA Estimators

- Optimal Parametric Methods
- Approximation/Relaxation Concept and its Application
 - Spectral-based Techniques
 - Relaxation Based on Geometry Exploitation
 - Sparse Reconstruction Methods
 - Majorization-Minimization

Asymptotic Performance Bound

- Conventional Cramér-Rao Bound
- Partially-relaxed Cramér-Rao Bound

To avoid the difficulty of the multi-dimensional multimodal optimization over a nonconvex manifold A_N the compressed sensing (CS) approach is to sample the field of view Ω on a fine grid of DOAs

$$ilde{oldsymbol{ heta}} = [ilde{ heta}_1, ilde{ heta}_2, \dots, ilde{ heta}_K]^\mathsf{T} \in \Theta^K$$

with $K \gg N$ constructing an fixed overcomplete (fat) dictionary (sensing) matrix

$$\tilde{A} = A(\tilde{\theta}) \in A_K.$$

In the following we assume for simplicity that the true source DoAs in vector θ lie on the grid, hence

$$\theta_n \in \tilde{\Theta} = \{\tilde{\theta}_1, \ldots, \tilde{\theta}_K\} \text{ for } n = 1, \ldots, N.$$

- Observe T snapshots of N source signals impinging on array of M sensors
- Sparse representation of $M \times T$ measurement matrix

$$X = \tilde{A}\tilde{F} + N$$

with

- $M \times K$ sensing matrix $\tilde{A} = [a(\tilde{ heta}_1), \dots, a(\tilde{ heta}_K)]$
- $K \times T$ joint sparse signal matrix $\tilde{F} = [\tilde{f}(1), \dots, \tilde{f}(T)]$
- **D** $M \times T$ sensor noise matrix $N = [n(1), \ldots, n(T)]$.

• $\ell_{p,q}$ mixed-norm of matrix $\tilde{F} = \left[\tilde{f}_1, \dots, \tilde{f}_K\right]^{-1}$:

$$\| ilde{m{F}}\|_{p,q} = \left(\sum_{k=1}^K \| ilde{m{f}}_k\|_p^q
ight)^{rac{1}{q}}.$$

- Nonlinear coupling of elements in row vectors \tilde{f}_k by ℓ_p -norm.
- Ideal for sparse reconstruction: $\ell_{p,0}$ -norm with $p \ge 2$.

With dictionary \tilde{A} the LS fitting problem can be equivalently reformulated as

$$\min_{\tilde{F} \in \mathbb{C}^{K \times T}} \| X - \tilde{A}\tilde{F} \|_{\mathsf{F}}^{2}$$
subject to $\| \tilde{F} \|_{p,0} = N.$

- Note, that the sensing matrix \tilde{A} is fat, hence the equation $X = \tilde{A}\tilde{F}$ has infinitely many exact solutions.
- Hence, in the $\ell_{p,0}$ -constrained problem we search for an *N*-row sparse solution that minimizes the fitting error.
- Dictionary \tilde{A} is constant, hence the optimization over manifold A_N has been avoided in the problem reformulation.
- However, the $\ell_{p,0}$ -constraint is still nonconvex and combinatorial.

To solve the problem Lagrangian relaxation can be applied. The corresponding dual function is

$$d(\lambda) = \min_{\tilde{F} \in \mathbb{C}^{K \times T}} \frac{1}{2} \| X - \tilde{A} \tilde{F} \|_{\mathsf{F}}^2 + \lambda \| \tilde{F} \|_{p,0} - \lambda N$$

for $\lambda \geq 0$.

- The Lagrange multiplier λ marks the cost associated with the violation of the l_{p,0} constraint.
- The Lagrangian minimization problem provides a lower bound for the objective function value of the $\ell_{p,0}$ constrained LS matching problem above.
- We will later discuss a practical procedure for finding a suitable λ .
- The relaxed problem is still nonconvex due to the nonconvexity of the $\ell_{p,0}$ mixed-norm, hence convex approximation techniques can be applied.

- A common convex approximation of the l_{p,0}-pseudo-norm that is known to promote sparse solutions is the l_{p,1}-norm. This approximation is commonly termed l₁-norm relaxation,...
- ... even though depending on the choice of λ it may not necessarily represent a relaxation of the the ℓ_0 constrained LS matching problem above in the optimization relaxation sense (the lower bound property is not necessarily satisfied).
- Further, for fixed λ dropping constant terms we obtain the ℓ_1 regularized LS problem also known as LASSO [Yang'18].

$$\hat{ ilde{F}}_{\lambda} = \min_{ ilde{F} \in \mathbb{C}^{K imes T}} rac{1}{2} \| m{X} - ilde{m{A}} ilde{F} \|_{\mathsf{F}}^2 + \lambda \| ilde{F} \|_{p,1}$$

where $\lambda \geq 0$.

Multiple Snapshot Problem – Mixed-Norm Regularization

• l_{2,1} Mixed-norm minimization [Malioutov'05], [Yuan'05]

$$\min_{\tilde{F}} \frac{1}{2} \left\| \boldsymbol{X} - \tilde{\boldsymbol{A}} \tilde{\boldsymbol{F}} \right\|_{\mathsf{F}}^{2} + \lambda \left\| \tilde{\boldsymbol{F}} \right\|_{2,1}$$

- Problem: For large number of snapshots *T* or large number of candidate frequencies *K* the problem becomes computationally intractable.
- Heuristic approach: Reduction of the dimension of measurement matrix X by ℓ_1 -SVD and adaptive grid refinement,

Choice of regularization parameter λ

It can be proven that with the choice

$$\lambda \ge \lambda_{\max} = \max_{k=1,\dots,K} \|\tilde{\boldsymbol{a}}_k^{\mathsf{H}} \boldsymbol{X}\|_2$$

the all zero matrix $\hat{\tilde{F}}_{\lambda} = \hat{\tilde{F}}_{\lambda_{\max}} = \mathbf{0}_{K \times T}$ is always the optimal solution of the $\ell_{2,1}$ mixed-norm problem.

- Hence λ_{\max} provides an upper bound for the choice of λ .
- The bisection algorithm can be used to find the smallest value of λ_{N,min} for which an *N*-row-sparse solution matrix *F*<sub>λ_{N,min} is obtained, i.e., ||*F*<sub>λ_{N,min}||_{2,0} = N.
 </sub></sub>

1.5 Ground truth $\ell_{2,1}$ -solution Signal norm $\| ilde{f}_k\|_2$ 1 0.5 0 45 90 135 180 DOA (deg)

 $\lambda = 1.82$

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 119

1.5 Ground truth $\ell_{2,1}$ -solution Signal norm $\| ilde{f}_k\|_2$ 1 0.5 0.5 0 \odot 130 0 45 90 135 180 DOA (deg)

• If the solution is not *N*-row sparse, choose the *N*-largest local maxima.

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 120

 $\lambda = 0.88$

Sparse Relaxation Techniques Equivalent Formulation

SPARROW Formulation [Steffen'16] The $\ell_{2,1}$ mixed-norm minimization problem

$$\min_{\tilde{F} \in \mathbb{C}^{K \times T}} \frac{1}{2} \left\| \boldsymbol{X} - \tilde{\boldsymbol{A}} \tilde{\boldsymbol{F}} \right\|_{\mathsf{F}}^{2} + \lambda \sqrt{T} \left\| \tilde{\boldsymbol{F}} \right\|_{2,1}$$

is equivalent to SPARse ROW-norm reconstruction (SPARROW)

$$\min_{\boldsymbol{G}\in\mathbb{D}_{+}^{K}}\operatorname{Tr}\left((\tilde{\boldsymbol{A}}\boldsymbol{G}\tilde{\boldsymbol{A}}^{\mathsf{H}}+\lambda\boldsymbol{I})^{-1}\hat{\boldsymbol{R}}\right)+\operatorname{Tr}\left(\boldsymbol{G}\right),$$

with $\hat{R} = XX^{H}/T$ and minimizers $\hat{\tilde{F}} = [\hat{\tilde{f}}_{1} \dots, \hat{\tilde{f}}_{K}]^{\mathsf{T}}$ and $\hat{G} = \operatorname{diag}(\hat{g}_{1}, \dots, \hat{g}_{K})$ as

$$\hat{\tilde{F}} = \hat{G}\tilde{A}^{\mathsf{H}}(\tilde{A}\hat{G}\tilde{A}^{\mathsf{H}} + \lambda I)^{-1}X \text{ and } \hat{g}_k = \|\hat{\tilde{f}}_k\|_2/\sqrt{T} \text{ for } k = 1,\ldots,K.$$

Sparse Relaxation Techniques Equivalent Formulation

SPARROW formulation

$$\min_{\boldsymbol{G}\in\mathbb{D}_{+}^{K}}\mathrm{Tr}\big((\tilde{\boldsymbol{A}}\boldsymbol{G}\tilde{\boldsymbol{A}}^{\mathsf{H}}+\lambda\boldsymbol{I})^{-1}\hat{\boldsymbol{R}}\big)+\mathrm{Tr}(\boldsymbol{G}).$$

■ SDP implementation for oversampled case *T* > *M*

Sparse Relaxation Techniques Simulation Results

Uncorrelated Source Signals

$$M = 5, \ \boldsymbol{\theta} = [90^{\circ}, 100^{\circ}]^{\mathsf{T}}, \ T = 200, \ \rho = 0, \ \lambda = \sqrt{\nu MT \log M}$$

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 123

Sparse Relaxation Techniques Simulation Results

Correlated Source Signals

$$M = 5, \ \boldsymbol{\theta} = [90^{\circ}, 100^{\circ}]^{\mathsf{T}}, \ T = 200, \ \rho = 0.99, \ \lambda = \sqrt{\nu MT \log M}$$

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 124

Table of Contents	
Introduction to Direction-of-Arrival (DoA) Estimation	
Motivation	D . I
 Conventional Signal Model 	Part I
Revision of DOA Estimators	
 Optimal Parametric Methods 	
Approximation/Relaxation Concept and its Application	Dort II
 Spectral-based Techniques 	Part II
 Relaxation Based on Geometry Exploitation 	Dort III
Sparse Reconstruction Methods	Part III
 Majorization-Minimization Asymptotic Performance Bound Conventional Cramér-Rao Bound Partially-relaxed Cramér-Rao Bound 	Part IV

Table of Contents

Introduction to Direction-of-Arrival (DOA) Estimation

- Motivation
- Conventional Signal Model

Revision of DOA Estimators

- Optimal Parametric Methods
- Approximation/Relaxation Concept and its Application
 - Spectral-based Techniques
 - Relaxation Based on Geometry Exploitation
 - Sparse Reconstruction Methods
 - Majorization-Minimization

Asymptotic Performance Bound

- Conventional Cramér-Rao Bound
- Partially-relaxed Cramér-Rao Bound

Properties of Multi-source Criteria

- Excellent threshold and asymptotic estimation performance.
- Full *N*-dimensional search required.
- Prohibitive complexity for scenarios where *N* > 3.

Solution: Approximation Methods

- Approximation techniques such as Alternating Projection, Block Coordinate Descent, viable options for local convergence.
- Majorization-minimization (MM) approach is an iterative optimization technique.
- Original optimization problem approximated by a sequence of upper bound problems.
- The approximate problems much easier to solve than the original problem (e.g. closed form).

ML problem:

$$\hat{\boldsymbol{lpha}}_{\mathrm{ML}} = \operatorname*{arg\,min}_{\boldsymbol{lpha}} \mathcal{L}(\boldsymbol{x}|\boldsymbol{lpha}).$$

Approximate problem at point $\hat{\alpha}^{(k)}$ in iteration *k*:

$$\hat{\boldsymbol{\alpha}}^{(k+1)} = \operatorname*{arg\,min}_{\boldsymbol{\alpha}} \bar{\mathcal{L}}^{(k)} (\boldsymbol{x} | \boldsymbol{\alpha}; \hat{\boldsymbol{\alpha}}^{(k)})$$

where the approximate function $\bar{\mathcal{L}}^{(k)}(\mathbf{x}|\alpha; \hat{\alpha}^{(k)})$ is chosen such that it satisfies • upper bound property:

$$ar{\mathcal{L}}^{(k)}ig(oldsymbol{x} | oldsymbol{lpha}; \hat{oldsymbol{lpha}}^{(k)}ig) \geq \mathcal{L}ig(oldsymbol{x} | oldsymbol{lpha}ig), \quad orall oldsymbol{lpha}$$

• tightness at $\hat{\alpha}^{(k)}$:

$$\bar{\mathcal{L}}^{(k)}(\boldsymbol{x}|\hat{\boldsymbol{\alpha}}^{(k)};\hat{\boldsymbol{\alpha}}^{(k)}) = \mathcal{L}(\boldsymbol{x}|\hat{\boldsymbol{\alpha}}^{(k)}).$$

- Expectation-maximization (EM) algorithm [Miller'90] [Dempster'77] is a special case of the MM algorithm [Hunter'04], [Luo'16].
- Unobserved data y only available through mapping x = T(y), hence given y the observed data x is fully determined.
- $f(\mathbf{x}|\mathbf{y}, \alpha)$ is conditional pdf of observations \mathbf{x} given unobserved data \mathbf{y} with parameterization α .
- $f(y|\alpha)$ is pdf of unobserved data y with parameterization α .
- In the EM algorithm the negative likelihood is approximated by Jensen's inequality

$$egin{aligned} \mathcal{L}ig(\mathbf{x}|oldsymbol{lpha}ig) &= -\ln \mathrm{E}_{\mathbf{y}|\mathbf{x},\hat{oldsymbol{lpha}}^{(k)}} \Big(rac{f(\mathbf{x},\mathbf{y}|oldsymbol{lpha})}{f(\mathbf{y}|\mathbf{x},\hat{oldsymbol{lpha}}^{(k)})}\Big) \\ &\leq -\mathrm{E}_{\mathbf{y}|\mathbf{x},\hat{oldsymbol{lpha}}^{(k)}} \Big(\lnig(f(\mathbf{y}|oldsymbol{lpha})ig)\Big) + \mathrm{constant} \triangleq ar{\mathcal{L}}^{(k)}ig(\mathbf{x}|oldsymbol{lpha};\hat{oldsymbol{lpha}}^{(k)}ig). \end{aligned}$$

Consider example of DML signal model with known noise variance ν

$$\boldsymbol{x}(t) = \sum_{n=1}^{N} \boldsymbol{a}(\theta_n) \boldsymbol{s}_n(t) + \boldsymbol{n}(t)$$

where $\boldsymbol{A} = [\boldsymbol{a}(\theta_1), \dots, \boldsymbol{a}(\theta_N)] \in \mathcal{A}_N$ and $\boldsymbol{n}(t) \sim \mathcal{N}_{\mathsf{C}}(\boldsymbol{0}_M, \nu \boldsymbol{I}_M)$.

Define unobserved data y^T(t) = [y₁^T(t),...,y_N^T(t)] as individual source contributions

$$\boldsymbol{y}_n(t) = \boldsymbol{a}(\theta_n)\boldsymbol{s}_n(t) + \boldsymbol{n}_n(t), \quad n = 1, \dots, N$$

with i.i.d. $\boldsymbol{n}_n(t) \sim \mathcal{N}_{\mathsf{C}}(\boldsymbol{0}_{M \times 1}, \nu_n \boldsymbol{I}_M)$ and $\sum_{n=1}^N \nu_n = \nu$. Then

$$\mathbf{x}(t) = \sum_{n=1}^{N} \mathbf{y}_n(t) = \sum_{n=1}^{N} \mathbf{a}(\theta_n) \mathbf{s}_n(t) + \mathbf{n}(t), \text{ where } \mathbf{n}(t) = \sum_{n=1}^{N} \mathbf{n}_n(t).$$

Expectation Step

At point $\hat{\alpha}^{(k)} = [\hat{\theta}^{(k)\mathsf{T}}, \hat{s}^{(k)\mathsf{T}}]^\mathsf{T}$ in iteration *k*, the approximate upper bound function can be characterized as

$$\begin{split} \bar{\mathcal{L}}^{(k)}(\boldsymbol{x},\boldsymbol{\theta},\boldsymbol{s}|\hat{\boldsymbol{\theta}}^{(k)},\hat{\boldsymbol{s}}^{(k)}) \propto \sum_{n=1}^{N} \mathrm{E}_{\boldsymbol{y}_{n}|\boldsymbol{x},\hat{\boldsymbol{\alpha}}^{(k)}} \Big(\ln\left(f(\boldsymbol{y}_{n}|\boldsymbol{\alpha})\right) \Big) \\ \propto -\sum_{n=1}^{N} \left\| \underbrace{\boldsymbol{a}(\hat{\theta}_{n}^{(k)})\hat{s}_{n}^{(k)} - \frac{1}{N}\left(\boldsymbol{x} - \boldsymbol{A}(\hat{\boldsymbol{\theta}}^{(k)})\hat{\boldsymbol{s}}^{(k)}\right)}_{\hat{\boldsymbol{y}}_{n}^{(k)}(t)} - \boldsymbol{a}(\theta_{n})\boldsymbol{s}_{n} \right\|^{2} \end{split}$$

where we omitted constant terms. Maximization Step

$$\left(\hat{\theta}_{n}^{(k+1)}, \hat{s}_{n}^{(k+1)}\right) = \operatorname*{arg\,min}_{\theta_{n}, s_{n}(1), \dots, s_{n}(T)} \sum_{t=1}^{T} \left\| \boldsymbol{a}(\theta_{n}) s_{n}(t) - \hat{\boldsymbol{y}}_{n}^{(k)}(t) \right\|^{2}, \quad \text{for } n = 1, \dots, N.$$

Solved in parallel or sequentially. Each subproblem is simple to solve.

Table of Contents

Introduction to Direction-of-Arrival (DOA) Estimation

- Motivation
- Conventional Signal Model

Revision of DOA Estimators

- Optimal Parametric Methods
- Approximation/Relaxation Concept and its Application
 - Spectral-based Techniques
 - Relaxation Based on Geometry Exploitation
 - Sparse Reconstruction Methods
 - Majorization-Minimization

Asymptotic Performance Bound

- Conventional Cramér-Rao Bound
- Partially-relaxed Cramér-Rao Bound

Parametric Model

- Random stationary process x.
- Observations over time $\mathbf{x}(t) \in \mathcal{X}$ for t = 1, ..., T of the random process \mathbf{x} .
- Non-redundant deterministic parameter vector $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_I]^{\mathsf{T}} \in \mathbb{R}^{I \times 1}$.
- Probability density function for a given parameter $f_{\mathbf{x}}(\mathbf{x}|\boldsymbol{\alpha})$.

Objective of Parametric Estimation

- Assumption: Independent observations over time drawn from the same probability density function with the true parameter α_{true} .
- Given the observations $\{x(1), \ldots, x(T)\}$ and the family of the probability density functions $f_{\mathbf{x}}(\mathbf{x}|\alpha)$.
- Estimate α_{true} by an estimator $\hat{\alpha}$.

For a given estimator $\hat{\boldsymbol{\alpha}} = T(\mathbf{x}(1), \dots, \mathbf{x}(T))$

• Bias $\mu = \mathbb{E} \{ \hat{\alpha} \}.$

• Covariance
$$\Sigma = \mathbb{E}\left\{ \left(\hat{\alpha} - \mu \right) \left(\hat{\alpha} - \mu \right)^{\mathsf{H}} \right\}.$$

Fisher Information Matrix

Under some regularity conditions, the Fisher Information Matrix (FIM) is defined as

$$\mathcal{I}(\boldsymbol{\alpha}) = -\mathbb{E}\left\{ \nabla_{\boldsymbol{\alpha}}^2 \left(\log f_{\mathbf{X}}(\mathbf{X}|\boldsymbol{\alpha}) \right) \right\}.$$

Crámer-Rao Inequality

For any unbiased estimator $\hat{\alpha}$ with the covariance matrix Σ , we have

$$\boldsymbol{\Sigma} \succeq \boldsymbol{C}(\boldsymbol{\alpha}_{\mathrm{true}}) = \left[\boldsymbol{\mathcal{I}}(\boldsymbol{\alpha}_{\mathrm{true}}) \right]^{-1}.$$

Special Case: Gaussian case

- Parameter vector: $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_l]^{\mathsf{T}}$.
- Circularly-symmetric complex Gaussian observation: $\mathbf{x} \sim \mathcal{N}_{\mathsf{C}}(\boldsymbol{m}(\boldsymbol{\alpha}), \boldsymbol{K}(\boldsymbol{\alpha}))$.

Slepian-Bangs Formula

The *ij*-th element of the FIM matrix is given by

$$\begin{split} \left[\mathcal{I}\left(\boldsymbol{\alpha}\right) \right]_{ij} = & \operatorname{Tr}\left(\boldsymbol{K}(\boldsymbol{\alpha})^{-1} \frac{\partial \boldsymbol{K}(\boldsymbol{\alpha})}{\partial \alpha_i} \boldsymbol{K}(\boldsymbol{\alpha})^{-1} \frac{\partial \boldsymbol{K}(\boldsymbol{\alpha})}{\partial \alpha_j} \right) \\ &+ 2 \operatorname{Re}\left\{ \frac{\partial \boldsymbol{m}(\boldsymbol{\alpha})^{\mathsf{H}}}{\partial \alpha_i} \boldsymbol{K}(\boldsymbol{\alpha})^{-1} \frac{\partial \boldsymbol{m}^{\mathsf{H}}(\boldsymbol{\alpha})}{\partial \alpha_j} \right\}. \end{split}$$

Necessary condition for the invertibility of the FIM matrix

- The parameter vector must be locally identifiable.
- Consequence: the parameters must be non-redundant.

Partition the FIM matrix

$$\boldsymbol{\mathcal{I}}(\boldsymbol{\alpha}) = \begin{bmatrix} \boldsymbol{\mathcal{I}}_{\boldsymbol{\theta}\boldsymbol{\theta}} & \boldsymbol{\mathcal{I}}_{\boldsymbol{\theta}\boldsymbol{\beta}} \\ \boldsymbol{\mathcal{I}}_{\boldsymbol{\beta}\boldsymbol{\theta}} & \boldsymbol{\mathcal{I}}_{\boldsymbol{\beta}\boldsymbol{\beta}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{C}_{\boldsymbol{\theta}\boldsymbol{\theta}} & \boldsymbol{C}_{\boldsymbol{\theta}\boldsymbol{\beta}} \\ \boldsymbol{C}_{\boldsymbol{\beta}\boldsymbol{\theta}} & \boldsymbol{C}_{\boldsymbol{\beta}\boldsymbol{\beta}} \end{bmatrix}^{-1} \text{ with } \boldsymbol{\alpha} = \begin{bmatrix} \boldsymbol{\theta}^{\mathsf{T}}, \boldsymbol{\beta}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$

- θ contains desired parameters.
- β contains nuisance parameters.

Crámer-Rao bound of the desired parameters θ

$$oldsymbol{\mathcal{C}}_{oldsymbol{ heta}oldsymbol{ heta}} = \left(oldsymbol{\mathcal{I}}_{oldsymbol{ heta}oldsymbol{ heta}} - oldsymbol{\mathcal{I}}_{oldsymbol{ heta}oldsymbol{eta}}oldsymbol{\mathcal{I}}_{oldsymbol{eta}oldsymbol{ heta}} oldsymbol{\mathcal{I}}_{oldsymbol{eta}oldsymbol{eta}}
ight)^{-1}$$

Recall the Deterministic Signal Model

$$\mathbf{x}(t) \sim \mathcal{N}_{\mathsf{C}}(\mathbf{A}(\boldsymbol{\theta})\mathbf{s}(t), \nu \mathbf{I})$$
 for all $t = 1, \dots, T$.

Deterministic Crámer-Rao Bound

$$\boldsymbol{C}_{det}(\boldsymbol{\theta}) = \boldsymbol{C}_{\boldsymbol{\theta}\boldsymbol{\theta}} = \frac{\nu}{2T} \operatorname{Re}\left\{\hat{\boldsymbol{P}}^{\mathsf{T}} \odot \left(\boldsymbol{D}^{\mathsf{H}} \boldsymbol{\Pi}_{\boldsymbol{A}}^{\perp} \boldsymbol{D}\right)\right\}^{-1}$$
$$\bullet \hat{\boldsymbol{P}} = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{s}(t) \boldsymbol{s}^{\mathsf{H}}(t) = \frac{1}{T} \boldsymbol{S} \boldsymbol{S}^{\mathsf{H}} \qquad \bullet \boldsymbol{D} = \left[\frac{\mathrm{d}\boldsymbol{a}(\theta_{1})}{\mathrm{d}\boldsymbol{\theta}}, \dots, \frac{\mathrm{d}\boldsymbol{a}(\theta_{N})}{\mathrm{d}\boldsymbol{\theta}}\right]$$

Recall the Stochastic Signal Model

$$\mathbf{x}(t) \sim \mathcal{N}_{\mathsf{C}}(\mathbf{0}, \mathbf{A}(\boldsymbol{\theta})\mathbf{P}\mathbf{A}^{\mathsf{H}}(\boldsymbol{\theta}) + \nu \mathbf{I})$$
 for all $t = 1, \dots, T$

Stochastic Crámer-Rao Bound

$$\boldsymbol{C}_{\text{sto}}(\boldsymbol{\theta}) = \boldsymbol{C}_{\boldsymbol{\theta}\boldsymbol{\theta}} = \frac{\nu}{2T} \operatorname{Re}\left\{\boldsymbol{M}^{\mathsf{T}} \odot \left(\boldsymbol{D}^{\mathsf{H}} \boldsymbol{\Pi}_{A}^{\perp} \boldsymbol{D}\right)\right\}^{-1}$$
$$\boldsymbol{M} = \boldsymbol{P} \boldsymbol{A}^{\mathsf{H}} \boldsymbol{R}^{-1} \boldsymbol{A} \boldsymbol{P} \qquad \boldsymbol{\Psi} \boldsymbol{D} = \left[\frac{\mathrm{d}\boldsymbol{a}(\theta_{1})}{\mathrm{d}\boldsymbol{\theta}}, \dots, \frac{\mathrm{d}\boldsymbol{a}(\theta_{N})}{\mathrm{d}\boldsymbol{\theta}}\right]$$

Asymptotic Performance Bound Crámer-Rao Bound for Partial Relaxation Model

Relaxed Array Manifold

.

$$ar{\mathcal{A}}_N = \left\{ m{A} | m{A} = \left[m{a}(heta), m{B}
ight], m{a}(heta) \in \mathcal{A}_1, m{B} \in \mathbb{C}^{M imes (N-1)} ext{ and } ext{rank}\left(m{A}
ight) = N
ight\}$$

Partial Relaxation Model for Time Instant t

$$\mathbf{x}(t) = \mathbf{A}\mathbf{s}(t) + \mathbf{n}(t)$$
 with $\mathbf{A} \in \overline{A}_N$.

Asymptotic Performance Bound Crámer-Rao Bound for Partial Relaxation Model

Relaxed Array Manifold

.

$$ar{\mathcal{A}}_N = \left\{ m{A} | m{A} = \left[m{a}(heta), m{B}
ight], m{a}(heta) \in \mathcal{A}_1, m{B} \in \mathbb{C}^{M imes (N-1)} ext{ and } ext{rank}\left(m{A}
ight) = N
ight\}$$

How does the array manifold relaxation affect the DOA estimation?

January 18th, 2021 | Technical University of Darmstadt | Blekinge Institute of Technology | M. Pesavento, M. Trinh-Hoang, M. Viberg | 140

Asymptotic Performance Bound Crámer-Rao Bound for Partial Relaxation Model

Reparameterization for Redundancy Elimination [Trinh-Hoang'20-2]

$$A(\theta) \in \mathcal{A}_{N} \qquad A = \begin{bmatrix} a_{1}(\vartheta) & b_{1}^{T} \\ a_{2}(\vartheta) & B_{2} \\ a_{3}(\vartheta) & B_{3} \end{bmatrix} \in \bar{\mathcal{A}}_{N} \qquad \bar{A} = AT = \begin{bmatrix} a_{1}(\vartheta) & \mathbf{0}^{T} \\ a_{2}(\vartheta) & \bar{B} \\ a_{3}(\vartheta) & I_{N-1} \end{bmatrix}$$

$$Partial \text{ Relaxation} \qquad Partial \text{ Relaxation} \qquad Reparameterization} \qquad Reparameterization} \qquad R = APA^{H} + \nu I_{M} \qquad R = \bar{A}\bar{P}\bar{A}^{H} + \nu I_{M}$$

- Structure of the desired direction is unaltered.
- Non-redundancy of the parameterization is ensured.

Asymptotic Performance Bound Expression of the PR-CRB

Recall the conventional Crámer-Rao Bound

$$C_{\text{sto}}(\theta) = \frac{\nu}{2T} \operatorname{Re} \left\{ \boldsymbol{M} \odot \left(\boldsymbol{D}^{\mathsf{H}} \boldsymbol{\Pi}_{\boldsymbol{A}}^{\perp} \boldsymbol{D} \right) \right\}^{-1}$$

$$\boldsymbol{M} = \left(\boldsymbol{P} \boldsymbol{A}^{\mathsf{H}} \boldsymbol{R}^{-1} \boldsymbol{A} \boldsymbol{P} \right)^{\mathsf{T}} \qquad \boldsymbol{D} = \left[\frac{\mathrm{d} \boldsymbol{a}(\theta_{1})}{\mathrm{d} \theta}, \dots, \frac{\mathrm{d} \boldsymbol{a}(\theta_{N})}{\mathrm{d} \theta} \right]$$

$$= \begin{bmatrix} M_{11} & M_{21}^{\mathsf{H}} \\ M_{21} & M_{22} \end{bmatrix} \qquad = [\boldsymbol{d}, \boldsymbol{D}_{2}]$$

Crámer-Rao Bound for $\vartheta = \theta_1$ under the PR model

$$C_{\text{PR-CRB}}\left(\vartheta\right) = \frac{\nu}{2T} \left(\left(M_{11} - \boldsymbol{M}_{21}^{\text{H}} \boldsymbol{M}_{22}^{-1} \boldsymbol{M}_{21} \right) \boldsymbol{d}^{\text{H}} \boldsymbol{\Pi}_{\boldsymbol{A}}^{\perp} \boldsymbol{d} \right)^{-1}$$
Asymptotic Performance Bound Expression of the PR-CRB - Implications

Crámer-Rao Bounds

$$\boldsymbol{C}_{\text{sto}}\left(\boldsymbol{\theta}\right) = \frac{\nu}{2T} \operatorname{Re}\left\{\boldsymbol{M} \odot \left(\boldsymbol{D}^{\mathsf{H}} \boldsymbol{\Pi}_{A}^{\perp} \boldsymbol{D}\right)\right\}^{-1}$$
$$\boldsymbol{C}_{\text{PR-CRB}}\left(\vartheta\right) = \frac{\nu}{2T} \left(\left(\boldsymbol{M}_{11} - \boldsymbol{M}_{21}^{\mathsf{H}} \boldsymbol{M}_{22}^{-1} \boldsymbol{M}_{21}\right) \boldsymbol{d}^{\mathsf{H}} \boldsymbol{\Pi}_{A}^{\perp} \boldsymbol{d}\right)^{-1}$$

PR-CRB is always lower-bounded by the conventional CRB, i.e.

$$C_{\text{PR-CRB}}\left(\vartheta_{n}\right)\geq\left[\boldsymbol{C}_{\text{sto}}\left(\boldsymbol{\theta}\right)
ight]_{nn},\qquad\text{for }n=1,\ldots,N.$$

 In the case of high SNR and uncorrelated source signals, the two bounds are approximately equal.

Asymptotic Performance Bound Expression of the PR-CRB - Implications

Recall the null-spectrum of PR-DML and PR-WSF estimator

$$f_{\text{PR-DML}}(\boldsymbol{a}) = \sum_{k=N}^{M} \lambda_k \left(\boldsymbol{\Pi}_{\boldsymbol{a}}^{\perp} \hat{\boldsymbol{R}} \right)$$
$$f_{\text{PR-WSF}}(\boldsymbol{a}) = \lambda_N \left(\boldsymbol{\Pi}_{\boldsymbol{a}}^{\perp} \hat{\boldsymbol{U}}_s \boldsymbol{W} \hat{\boldsymbol{U}}_s^{\mathsf{H}} \right)$$

Asymptotically as $T \to \infty$,

- The mean-square error of PR-WSF achieves PR-CRB for all positive definite weighting matrix *W*.
- The mean-square error of PR-WSF, PR-DML and MUSIC are identical.

Concluding Remarks

Problem relaxation

Deliberately ignoring part of the prior knowledge is a powerful approach to make complicated estimation problems computationally tractable (without sacrificing much performance).

- Partial array geometry relaxation.
- Relaxation of interference structure.

Extensions?

Revisit established algorithms for more advanced measurement models and design your own relaxation algorithms!!!

Use PR models in the performance analysis:

Understand which model information is relaxed in a particular algorithm.

MATLAB Code is available at

https://git.rwth-aachen.de/minh.trinh_hoang/ eusipco-2020-tutorial-source-code.git

Thank you for your attention!

References I

- John Stone Stone, "Method of determining the direction of space telegraph signals," US Patent 716,134, December 16, 1902.
- John Stone Stone, "Apparatus for determining the direction of space telegraph signals," US Patent 716,135, December 16, 1902.
- Lee de Forest, "Wireless signaling apparatus," US Patent 771,819, October 11, 1904.
- G. Marconi, John Ambrose Fleming, "On methods whereby the radiation of electric waves may be mainly confined to certain directions, and whereby the receptivity of a receiver may be restricted to electric waves emanating from certain directions," Proc. R. Soc. Lond. 77, pp.413–421.

References II

- E. Bellini, A. Tosi, "System of directed wireless telegraphy," US Patent 943,960, December 21, 1909.
- E. Bellini, A. Tosi, "Directed wireless telegraphy," US Patent 948,086, February 1, 1910.
- F. Adcock, "Improvement in Means for Determining the Direction of a Distant Source of Electro-magnetic Radiation," UK Patent 130,490, August 7, 1919.
- R. Keen, "Wireless Direction Finding," London, UK: Iliffe & Son Dorset House, 1938.
- H. G. Schantz, "On the origins of RF-based location" 2011 IEEE Topical Conference on Wireless Sensors and Sensor Networks, Phoenix, AZ, pp. 21-24, 2011.

References III

- D. Malioutov, M. Cetin, A. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 3010–3022, 2005.
- J. Capon, R.J. Greenfield, R. T. Lacoss, "Off-line signal processing results for the large aperture seismic array," Mass. Inst. Tech. Lincoln Lab., Lexington, Mass., Tech. Note 1966-37, July 11, 1966
- J. Capon, R.J. Greenfield, R.J. Kolker, "Multidimensional maximum-likelihood processing of a large aperture seismic array," Proceedings of the IEEE, vol. 55, no. 2, pp. 192-211, 1967.
- R.O. Schmidt, "Multiple emitter location and signal parameter estimation," Proc. RADC Spectrum Estimation Workshop, Griffiths AFB, Rome, New York, pp. 243-258, 1979.

References IV

- R.O. Schmidt, "Multiple emitter location and signal parameter estimation," PhD Dissertation, Stanford University, Stanford, California, 1981.
- R.O. Schmidt, "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, vol. 34, no. 3,pp.276–280, 1986.
- G. Bienvenu, L. Kopp, "Principle de la goniometrie passive adaptive," in Proceedings of the 7'eme Colloque GRESIT, Nice, France, pp. 106/1–106/10, 1979.
- A.J. Barabell, "Improving the resolution performance of eigenstructure-based direction-finding algorithms," Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Boston, MA, pp. 336–339, 1983.

References V

- R. Roy, A. Paulraj, T. Kailath, "ESPRIT a subspace rotation approach to estimation of parameters of cisoids in noise," IEEE Trans. Acoust. Speech Signal Process., vol 34, pp. 1340–1342, 1986.
- P. Stoica, K. Sharman, "Maximum likelihood methods for direction-of-arrival estimation," IEEE Trans. Acoust. Speech Signal Process., vol. 38, no. 7, 1132–1143, 1990.
- I. Ziskind, M. Wax, "Maximum likelihood localization of multiple sources by alternating projection," in IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, no. 10, pp. 1553-1560, 1988
- J. Böhme, "Estimation of source parameters by Maximum Likelihood and nonlinear regression," Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 9, pages 271–274, 1984.

References VI

- M. Wax. "Detection and Estimation of Superimposed Signals." Ph.D. Dissertation, Stanford Univ., Stanford, CA, 1985.
- M. Wax. "Detection and Localization of Multiple Sources in Noise with Unknown Covariance." IEEE Trans. Acoust. Speech Signal Process, vol. 40, no. 1, pp. 245-249, 1992.
- P. Stoica, A. Nehorai, "MUSIC, maximum likelihood and Cramer-Rao bound", IEEE Trans. Acoust. Speech Signal Process., vol. 37, no. 5, pp. 720–741, 1989.
- J.F. Böhme, "Estimation of spectral parameters of correlated signals in wavefields," Signal Process., vol. 11, pp. 329–337, 1986.

References VII

- J.F. Böhme, "Separated estimation of wave parameters and spectral parameters by maximum likelihood," Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Tokyo, Japan, 1986, pp. 2818–2822.
- Y. Bresler, "Maximum likelihood estimation of linearly structured covariance with application to antenna array processing," in Proceedings of the 4th ASSP Workshop on Spectrum Estimation and Modeling, Minneapolis, MN, pp. 172–175, 1988.
- P. Stoica, T. Söderström, "On reparametrization of loss functions used in estimation and the invariance principle," Signal Processing, vol. 17, no. 4, pp. 383-387, 1989.

References VIII

- R. Kumaresan, D.W. Tufts, "Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise," IEEE Trans. Acoust. Speech Signal Process. ASSP-30, pp. 833–840, 1982.
- M. I. Miller and D. R. Fuhrmann, "Maximum-likelihood narrow-band direction finding and the EM algorithm" in IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 9, pp. 1560-1577, 1990.
- D. R. Hunter and K. Lange, "A tutorial on MM algorithms," Am. Stat., vol. 58, no. 1, pp. 30–37, 2004.
- A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. R. Stat. Soc. Series B, vol. 39, no. 1, pp. 1–38, 1977.

References IX

- M. Hong, M. Razaviyayn, Z. Luo and J. Pang, "A Unified Algorithmic Framework for Block-Structured Optimization Involving Big Data: With applications in machine learning and signal processing" in IEEE Signal Processing Magazine, vol. 33, no. 1, pp. 57-77, Jan. 2016
- B. Ottersten, P. Stoica, R. Roy, "Covariance matching estimation techniques for array signal processing applications," Digital Signal Process., vol. 8, no. 3, pp. 185–210, 1998.
- Y. Bresler, V.U. Reddy, T. Kailath, "Optimum beamforming for coherent signal and interferences," IEEE Trans. Acoust. Speech Signal Process. 36 (6) (1988) 833–843.

References X

- B. Ottersten, M. Viberg, T. Kailath, "Analysis of subspace fitting and ML techniques for parameter estimation from sensor array data," IEEE Trans. Signal Process., vol. 40, no. 3, pp. 590–599, 1992.
- P. Stoica, A. Nehorai, "Performance study of conditional and unconditional direction of arrival estimation," IEEE Trans. Acoust. Speech Signal Process., vol. 38, no. 19, pp. 1783–1795, 1990.
- P. Stoica and A. Nehorai, "MODE, maximum likelihood and Cramer-Rao bound: conditional and unconditional results," Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Albuquerque, NM, USA, pp. 2715-2718 vol.5, 1990

References XI

- M. Viberg, B. Ottersten, "Sensor Array Processing Based on Subspace Fitting," IEEE Transactions on Signal Processing, vol. 39, no. 5, pp. 1110–1121, 1991.
- E.L. Lehmann, G. Casella, "Theory of Point Estimation," second ed., Springer, New York, 1998.
- A. G. Jaffer, "Maximum likelihood direction finding of stochastic sources: a separable solution," Proc. International Conference on Acoustics, Speech, and Signal Processing, New York, NY, USA, pp. 2893-2896, 1988.
- C. Steffens, M. Pesavento, M. E. Pfetsch, "A compact formulation for the $\ell_{2,1}$ mixed-norm minimization problem," IEEE Transactions on Signal Processing, vol. 66, no. 6, pp. 1483-1497, 2018.

References XII

- Z. Yang, Jian Li, Petre Stoica, Lihua Xie, "Chapter 11 Sparse methods for direction-of-arrival estimation," Editor(s): Rama Chellappa, Sergios Theodoridis, Academic Press Library in Signal Processing, Volume 7, Academic Press, pp. 509-581, 2018.
- Yuan, M. and Lin, Y. L. Ming Yuan, "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society. Series B (Statistical Methodology), vol. 68, no. 1, pp. 49–67, 2006.
- M. Trinh-Hoang, W. Ma and M. Pesavento, "Cramer-Rao Bound for DOA Estimators under the Partial Relaxation Framework: Derivation and Comparison," IEEE Transactions on Signal Processing, 2020.

References XIII

- M. Trinh-Hoang, W. Ma and M. Pesavento, "A Partial Relaxation DOA Estimator Based on Orthogonal Matching Pursuit," Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, pp. 4806-4810, 2020.
- M. Trinh-Hoang, W. Ma and M. Pesavento, "Partial Relaxation Approach: An Eigenvalue-Based DOA Estimator Framework," IEEE Transactions on Signal Processing, vol. 66, no. 23, pp. 6190-6203, 2018.
- M.S.Bartlett, "Smoothing Periodograms from Time-Series with Continuous Spectra," Nature, 161:686-687, 1948

References XIV

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, "LAPACK Users' Guide", 3rd ed. Philadelphia, Society for Industrial and Applied Mathematics, 1999.