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Problem Definition

Given a string S over alphabet Σ={1,...,𝜎} of size n, consider a data structure that supports the 
following operations:

1. access(i): Return S[i].

2. replace(u, c): replace S[i] with c.

- These two operations are basic operations on standard RAM.

- We assume that word-RAM model with word size Θ(log n), which means access operation can 
return any Θ(log𝜎 n) consecutive symbols in O(1) time.
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Problem Definition
We also consider the following two additional operations on S

3. insert (i, c): Insert c between S[i-1] and S[i].

4. delete(i): Delete S[i].

- Data structure which supports access, replace, insert, and delete is called dynamic RAM.

Problem: Construct dynamic RAM using small space while supporting the operations efficiently.

Here, the small space means close to Hk(S) (the k-th entropy of S). 
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Previous Results

- Theoretically, there are several works ([Jansson et al. 12], [Grossi et al. 13], [Munro and Nekrich 15]). 

All of them support the queries efficiently while using o(Hk(S))-bit additional space from Hk(S).

- Also there are some practical implementations

SPSI (Searchable Partial Sums with Insert) [Prezza 17]

: Uncompressed, delete is not implemented 

(input can be compressed, delete is implemented when 𝜎 =2).

KN [Klitzke and Nicholson 16]

: Based on the work of [Jansson et al. 12] with LZ compression.



Our Results

New Practical implementation of compressed dynamic RAM while supporting 

access/replace/insert/delete operations

- Based on [Jansson et al. 12] (CRAM) and [Grossi et al. 13] (DCRAM).

- Compressed S based on Huffman code (KN uses LZ-based compression).

- As in theory, the space changes based on the current input’s entropy (this is not supported in SPSI 

and KN).

- Optimized for sequential operations.

- Compared our implementation with SPSI and KN.

The source is available at https://github.com/wyptcs/CRAM



[Jansson et al. 12] (CRAM)

CRAM in theory (for access and replace)

- Divide S into blocks of size r = 1/2 log𝜎 n

- Consider S as a string S’ of length n’= n/r over an alphabet 2r, and construct a code table for S’ 

based on the frequency of the symbols in S’. 

- Consecutive r/ε (0 < ε <1 ) blocks form a single superblock.

- Special DS (darray) for answering the end position of the i-th superblock while supporting updates, 

access can be answered in O(1) time using darray.



[Jansson et al. 12] (CRAM)

CRAM in theory (for access and replace)

- For replace, maintain two encode and decode tables (old and new).

- When i-th replace operation occurs, re-encode the superblock that contains the cor. Position, and update 
the frequency table.

- In addition, we update (i mod n’) superblock using new encode table.

- After n’ updates, reconstruct the tables based on the current frequencies of the symbols.

- In overall, supporting replace in O(1/ε) time.



[Grossi et al. 13] (DCRAM)

DCRAM in theory (for access and replace)

- S’ and darray structures on the blocks.

- Each symbol c in S’ is divided into class Cj based iff their frequency is between n’/2j and n’/2j+1, and 

we assign a code of length j+3 for the symbols in Cj (Hence, we have some unused codes for each 

class). 

- access can be supported in O(1) time, similar as CRAM.



[Grossi et al. 13] (DCRAM)

DCRAM in theory (for access and replace)

- After replace, if the class of c is changed (increased), we assign a new codeword according to the 

class of c. 

- If there is no unused code for c, reconstruct the entire DS (this can be amortized in theory).

- In theory, Ω(n’) replace operations can be performed before the reconstruction. Hence one can 

support replace in O(1) time.



Practical Implementation of CRAM

- Each blocks of S is encoded using Huffman code. We do linear scan on the superblock.

- For managing superblocks, we use B+-tree with fixed height h (i.e., root is not splitted. h is 

depending on the size of S) instead of darray.

- O(h log (r/ε) + r/ε) for time for both operations.

- For supporting sequential operations efficiently, we store the position of the superblock that 

recently used, and apply some SIMD operations.



Practical Implementation of DCRAM

- We need some unused codes for DCAM.

- We make a space for unused codes using Extended Huffman tree. For implementation we 

consider (i) Type-1: codes starting with 1 is initially unused, and (ii) Type-2: codes starting with 11 is 

initially unused.

- For both Type-1 and -2 trees, at least Ω(n’) update operations are necessary before reconstructing 

the tree. 



Practical Implementation of DCRAM

- In addition to Extended Huffman tree, we use lazy update on DCRAM, which combines the update 

algorithms of CRAM and DCRAM.

- In lazy update, we reconstruct the tree when (i) every superblock is re-encoded, and (ii) there is no 

unused code.



Experimental Results

Equipment specifications

AMD Ryzen 5 1600 Six-Core Processor (576KB L1, 3MB L2, and 16MB L3 cache) with 32GB RAM.

Datasets from Pizza&Chilli Corpus (http://pizzachili.dcc.uchile.cl/texts.html)

All files sizes are 200MB

File Name 𝜎 H0 H1

DNA 16 0.247 0.245

ENGLISH 225 0.565 0.509

PROTEINS 25 0.525 0.524

XML 96 0.657 0.547



Experimental Results

Some parameters for experiments

- r (block size): 2

- 1/ε (#blocks in each superblock for CRAM): 512 initially

- h (height of fixed B+-tree): 2, each node contains the information of ~200 consecutive superblocks.

- u (for CRAM and DCAM with lazy update): decides how many superblocks are additionally re-

encoded for each updated. 

- For CRAM, u = 1 means no reconstruction, and u (>1) reconstructions during n’ updates.



Experimental Results

(i) Replace-seq: Overwrites from ENGLISH to DNA sequentially.

- SPSI is ~7 times faster than ours (does not compress the input).

- KN is 2~3 times faster than ours (highly optimized for sequential updates)

- Only our implementations reduce the space usage based on the input’s entropy. 



Experimental Results

(ii) Replace-random2 (ENGLISH): Perform n’ε replace operations with the same character

- DCRAM with lazy update works faster than KN while using less space during the progress.



Experimental Results

(iii) Insert-seq (ENGLISH): Insert n/2 same characters consecutively.

- KN is ~7 times faster than ours (highly optimized for sequential updates) while our 

implementations take less space.

- SPSI is worse in both time and space.



Conclusion

- New implementation of compressed RAM, which changes the space adaptively for the input’s 

entropy.

- Supporting decent operations times in both sequential and random tests.

Future work

- More optimization for sequential operations.

- Implementation based on the work of [Munro and Nekrich 15].
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