
Practical Implementations of 
Compressed RAM

Seungbum Jo (Chungnam National University, South Korea)

Wooyoung Park (Seoul National University, South Korea)

Kunihiko Sadakane (The University of Tokyo, Japan) 

Srinivasa Rao Satti (Norwegian University of Science and Technology, 
Norway)

DCC 2023



Problem Definition

Given a string S over alphabet Σ={1,...,𝜎} of size n, consider a data structure that supports the 
following operations:

1. access(i): Return S[i].

2. replace(u, c): replace S[i] with c.

- These two operations are basic operations on standard RAM.

- We assume that word-RAM model with word size Θ(log n), which means access operation can 
return any Θ(log𝜎 n) consecutive symbols in O(1) time.

3 7 5 2 6 3 1

3 7 5 2 6 3 1 3 7 5 7 6 3 1

access(3): Return 5

replace(3, 7)



Problem Definition
We also consider the following two additional operations on S

3. insert (i, c): Insert c between S[i-1] and S[i].

4. delete(i): Delete S[i].

- Data structure which supports access, replace, insert, and delete is called dynamic RAM.

Problem: Construct dynamic RAM using small space while supporting the operations efficiently.

Here, the small space means close to Hk(S) (the k-th entropy of S). 

3 7 5 2 6 3 1

3 7 5 2 6 3 1 3 7 5 6 3 1 delete(4)

3 7 6 5 2 6 3 1 insert(3, 6)



Previous Results

- Theoretically, there are several works ([Jansson et al. 12], [Grossi et al. 13], [Munro and Nekrich 15]). 

All of them support the queries efficiently while using o(Hk(S))-bit additional space from Hk(S).

- Also there are some practical implementations

SPSI (Searchable Partial Sums with Insert) [Prezza 17]

: Uncompressed, delete is not implemented 

(input can be compressed, delete is implemented when 𝜎 =2).

KN [Klitzke and Nicholson 16]

: Based on the work of [Jansson et al. 12] with LZ compression.



Our Results

New Practical implementation of compressed dynamic RAM while supporting 

access/replace/insert/delete operations

- Based on [Jansson et al. 12] (CRAM) and [Grossi et al. 13] (DCRAM).

- Compressed S based on Huffman code (KN uses LZ-based compression).

- As in theory, the space changes based on the current input’s entropy (this is not supported in SPSI 

and KN).

- Optimized for sequential operations.

- Compared our implementation with SPSI and KN.

The source is available at https://github.com/wyptcs/CRAM



[Jansson et al. 12] (CRAM)

CRAM in theory (for access and replace)

- Divide S into blocks of size r = 1/2 log𝜎 n

- Consider S as a string S’ of length n’= n/r over an alphabet 2r, and construct a code table for S’ 

based on the frequency of the symbols in S’. 

- Consecutive r/ε (0 < ε <1 ) blocks form a single superblock.

- Special DS (darray) for answering the end position of the i-th superblock while supporting updates, 

access can be answered in O(1) time using darray.



[Jansson et al. 12] (CRAM)

CRAM in theory (for access and replace)

- For replace, maintain two encode and decode tables (old and new).

- When i-th replace operation occurs, re-encode the superblock that contains the cor. Position, and update 
the frequency table.

- In addition, we update (i mod n’) superblock using new encode table.

- After n’ updates, reconstruct the tables based on the current frequencies of the symbols.

- In overall, supporting replace in O(1/ε) time.



[Grossi et al. 13] (DCRAM)

DCRAM in theory (for access and replace)

- S’ and darray structures on the blocks.

- Each symbol c in S’ is divided into class Cj based iff their frequency is between n’/2j and n’/2j+1, and 

we assign a code of length j+3 for the symbols in Cj (Hence, we have some unused codes for each 

class). 

- access can be supported in O(1) time, similar as CRAM.



[Grossi et al. 13] (DCRAM)

DCRAM in theory (for access and replace)

- After replace, if the class of c is changed (increased), we assign a new codeword according to the 

class of c. 

- If there is no unused code for c, reconstruct the entire DS (this can be amortized in theory).

- In theory, Ω(n’) replace operations can be performed before the reconstruction. Hence one can 

support replace in O(1) time.



Practical Implementation of CRAM

- Each blocks of S is encoded using Huffman code. We do linear scan on the superblock.

- For managing superblocks, we use B+-tree with fixed height h (i.e., root is not splitted. h is 

depending on the size of S) instead of darray.

- O(h log (r/ε) + r/ε) for time for both operations.

- For supporting sequential operations efficiently, we store the position of the superblock that 

recently used, and apply some SIMD operations.



Practical Implementation of DCRAM

- We need some unused codes for DCAM.

- We make a space for unused codes using Extended Huffman tree. For implementation we 

consider (i) Type-1: codes starting with 1 is initially unused, and (ii) Type-2: codes starting with 11 is 

initially unused.

- For both Type-1 and -2 trees, at least Ω(n’) update operations are necessary before reconstructing 

the tree. 



Practical Implementation of DCRAM

- In addition to Extended Huffman tree, we use lazy update on DCRAM, which combines the update 

algorithms of CRAM and DCRAM.

- In lazy update, we reconstruct the tree when (i) every superblock is re-encoded, and (ii) there is no 

unused code.



Experimental Results

Equipment specifications

AMD Ryzen 5 1600 Six-Core Processor (576KB L1, 3MB L2, and 16MB L3 cache) with 32GB RAM.

Datasets from Pizza&Chilli Corpus (http://pizzachili.dcc.uchile.cl/texts.html)

All files sizes are 200MB

File Name 𝜎 H0 H1

DNA 16 0.247 0.245

ENGLISH 225 0.565 0.509

PROTEINS 25 0.525 0.524

XML 96 0.657 0.547



Experimental Results

Some parameters for experiments

- r (block size): 2

- 1/ε (#blocks in each superblock for CRAM): 512 initially

- h (height of fixed B+-tree): 2, each node contains the information of ~200 consecutive superblocks.

- u (for CRAM and DCAM with lazy update): decides how many superblocks are additionally re-

encoded for each updated. 

- For CRAM, u = 1 means no reconstruction, and u (>1) reconstructions during n’ updates.



Experimental Results

(i) Replace-seq: Overwrites from ENGLISH to DNA sequentially.

- SPSI is ~7 times faster than ours (does not compress the input).

- KN is 2~3 times faster than ours (highly optimized for sequential updates)

- Only our implementations reduce the space usage based on the input’s entropy. 



Experimental Results

(ii) Replace-random2 (ENGLISH): Perform n’ε replace operations with the same character

- DCRAM with lazy update works faster than KN while using less space during the progress.



Experimental Results

(iii) Insert-seq (ENGLISH): Insert n/2 same characters consecutively.

- KN is ~7 times faster than ours (highly optimized for sequential updates) while our 

implementations take less space.

- SPSI is worse in both time and space.



Conclusion

- New implementation of compressed RAM, which changes the space adaptively for the input’s 

entropy.

- Supporting decent operations times in both sequential and random tests.

Future work

- More optimization for sequential operations.

- Implementation based on the work of [Munro and Nekrich 15].



Thank You


