

A Spatial-Focal Error Concealment Scheme for Corrupted Focal Stack Video

Kejun Wu¹, Yi Wang¹, Wenyang Liu¹, Kim-Hui Yap¹, and Lap-Pui Chau² 1.Nanyang Technological University 2.Hong Kong Polytechnic University

Outline

- Motivation
- Method
- Experiment
- Summary

Motivation

□ Focal stack photography technology & art

Macro Photography

Landscape Photography

Motivation

□ Focal stack applications in immersive multimedia and life science

Z-stacking microscopy reconstruction

Immersive multimedia

Motivation

□ Focal stack video formation

Features:

- Focal stack images can be concatenated as video format
- Such video has no significant movement, but has focusing status changes among frames

Method

- □ Problem statement: error concealment in focal stack scenario
 - Video segments get corrupt during storage or video packets get lost during transmission, resulting in error video at decoder side
 - Error concealment aims to recover the error by referring the adjacent information
 - Focal stack video is special data type, no specialized error concealment method

Example of focal stack video error

Method

□ Basic idea: spatial-adjacent & focal-adjacent assisted error concealment

Frame from previous GOP

Frame from error GOP

Frame from later GOP

Among spatial-adjacent frames and focal-adjacent frames, we simulate the frame regional changes by using bi-directional prediction (blurring and deblurring)

Method

□ Flowchart of the proposed focal stack video error concealment

- Recovering error regions by using the information from spatial-adjacent & focaladjacent frames
- Simulating the frame regional changes by using bi-directional prediction (blurring & deblurring processing)
- Selecting the optimal prediction mode and parameters by solving optimization problem (minimizing the prediction cost).

□ Experiment settings: 4 videos, 15 frames, 2 resolutions

Scene	I01 I02		IC)3	I04		
Scene type	reali	stic	synthesized				
Frame number	15	õ	15				
Resolution	624x	432	1024x512				
Error types	block 16	slice 16	block 16	block 32	slice 16	slice 32	
abbreviation	blk-16	slc-16	blk-16	blk-32	slc-16	slc-32	

Table 1: Details of test sequences and error distribution types

Figure 3: Thumbnails of Y-component of all test sequences and some examples of error distributions.

□ Objective performance: PSNR and SSIM

Our proposed scheme is compared with existing methods, achieving the highest PSNR and SSIM.

Table 2: Objective quality comparisons among all the sequences, all error types and all error concealment methods. The average PSNR and SSIM of all five error frames are calculated and presented.

Scene	Type	Error		Hybrid		SLP		KMMSE		Proposed	
		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
I01	blk-16	20.73	0.9306	49.73	0.9978	40.98	0.9919	41.54	0.9923	50.83	0.9982
	slc-16	17.82	0.8980	47.05	0.9957	36.49	0.9802	36.86	0.9804	47.97	0.9964
I02	blk-16	18.24	0.9270	48.26	0.9963	41.58	0.9892	41.90	0.9897	49.42	0.9968
	slc-16	15.32	0.8942	45.30	0.9928	32.90	0.9672	32.60	0.9656	46.43	0.9936
I03	blk16	19.84	0.9445	51.83	0.9987	40.16	0.9860	40.15	0.9860	55.02	0.9994
	slc-16	16.87	0.9152	48.80	0.9975	36.01	0.9678	35.83	0.9672	52.01	0.9989
	blk-32	17.01	0.9150	48.49	0.9973	36.65	0.9682	36.51	0.9681	52.88	0.9991
	slc-32	13.96	0.8531	45.35	0.9947	32.79	0.9319	32.43	0.9310	49.81	0.9982
I04	blk-16	22.36	0.9493	49.28	0.9987	39.20	0.9927	39.54	0.9931	53.30	0.9994
	slc-16	19.33	0.9187	46.30	0.9975	29.98	0.9630	29.98	0.9643	50.29	0.9988
	blk-32	18.49	0.9176	46.08	0.9976	32.54	0.9735	33.04	0.9765	51.18	0.9991
	slc-32	15.45	0.8549	42.91	0.9954	24.84	0.9178	24.92	0.9205	48.04	0.9981

□ Objective performance: PSNR and SSIM visualization

Visualization of objective quality comparison among all methods. The PSNR and SSIM curves of proposed scheme are the highest, showing the best PSNR and SSIM performance.

□ Subjective performance

(a) I01 block error

(b) I03 slice error

The proposed scheme obtain the best subjective quality. The recovered error regions are consistency with adjacent regions in sharpness and textures, also have no block effect.

- Proposed the error concealment method for focal stack video
- Making use of the information from both spatial-adjacent and focal-adjacent regions
- Simulating the focusing status bi-directionally changes by blurring and deblurring
- Achieving the best objective and subjective quality with sharpness consistency and without blocking effect
- Benefiting computational photography, 3D displays and Immersive multimedia

Any comment

Please feel free to contact us kejun.wu@ntu.edu.sg