
Constructing the CDAWG
CFG using LCP-Intervals

Alan Cleary and Jordan Dood

Some Definitions

CFG - Context Free Grammar

CDAWG - Compacted Directed Acyclic Word Graph

LCP - Longest Common Prefix

Context Free
Grammars

● A CFG is a set of production
rules

● Recursing the rules from a
designated ‘start’ rule yields a
string or language of strings

● Grammars that produce a
single string are called
‘straight-line’ grammars

(CFGs)

Why We Are
Interested in CFGs

● CFGs can be built from repeated
sub-sequences, and thus can result
in compression, of the string

● CFGs are self-indexing
● CFGs can be constructed in a

number of different ways, which
offers flexibility

S -> mXXiZi
X -> iY
Y -> ss
Z -> pp

mississippi

Start
(Pictographic
representation)

Motivation We wanted to build a ’bridge’
between the CFG realm and that of
other well studied string data
structuresWhat is needed

Putting It Another Way

We want to find a way of compressing strings as a context free grammars that …

maintains the information structure related to other data structures, like suffix
trees, CDAWGS, ect

and …

does so efficiently in both time and space, ideally O(n) time where n is the size of
the string

Design Criteria

1. Compress data into a straight-line

CFG

2. Build that CFG using the maximal

repeats of the string

3. With a time complexity of

O(nlogn) or O(n)

Repeats

A repeat is substring that occurs more than once in a string

A right-maximal repeat is repeat that cannot be extended further to the right
without reducing the number of occurrences

A left-maximal repeat is is a repeat that cannot be extended further to the left
without reducing the number of occurrences

A maximal repeat is a repeat that is both right- and left-maximal and is a subset of
both sets

Repeats

These repeats are inherent to a given string

Right-maximal repeats are represented by
the internal nodes of both the suffix tree and
the CDAWG, and define the Longest
Common Prefix (LCP) intervals of the suffix
array, the intervals of a suffix array that share
a common prefix

Because of this connection to these data
structures we wanted to utilize maximal
repeats to build our grammar

The Crux

AACTGGTCGATCGATCGATCTAGGCTACATGGCTAGCCATCTACTGCTGACTGGATCGACTAGAA … …

The Crux

AACTGGTCGATCGATCGATCTAGGCTACATGGCTAGCCATCTACTGCTGACTGGATCGACTAGAA … …

The difficulty is in choosing which rules to include
and how to handle overlaps

Strait-line Grammar
from Suffix Tree

Belazzougui, Djamal, and Fabio Cunial. "Representing the suffix tree with the CDAWG." 28th Annual Symposium on Combinatorial
Pattern Matching (2017).

This process uses a
Compacted Directed
Acyclic Word Graph
(CDAWG)

As well as a number of
simplification steps, to
build a CFG from the
structure of the CDAWG

Key Inspiration
For CDAWG-CFG

Because there is a bijection
between the internal nodes of the
suffix tree and the right-maximal
repeats, and because a subset of
these nodes are preserved during
the transformations, the grammar
that results is comprised of these
repeats.

We exploit this by noting the
bijection between the internal nodes
of a CDAWG and maximal repeats.

Why This Matters to Us

● Maximal repeats are (by definition) a subset of the right-maximal repeats, thus
maintaining the relatedness to other data structures

● Since the Belazzougui, et al. work shows that right-maximal repeats can be
used to build a grammar, and crucially, how these repeats are used to encode
the target string, maximal repeats should be able to do something similar

● The downside is that this starts with a suffix tree and has a lot of intermediate
graph structures

Comparison of Algorithms

Belazzougui, et al.

● Requires precomputting a suffix tree

and CDAWG

● Uses CDAWG nodes (right-maximal

repeats)

● Uses extraneous (for our purpose)

steps

Our Algorithm

● Uses LCP-intervals, which can

be computed from many data

structures

● Can be computed online

● Computes the CFG directly

Our Approach
Start

CFG

String

This is done by iterating the
LCP-intervals and specifically
uses those of maximal repeats to
build the strait-line grammar

 …

T

B 0 1 0 1 0 1 0 1
↑ ↑ ↑ ↑

Our Data Structure

Our data structure is an interval tree for answering stabbing queries on LCP-intervals in constant time, or more
generally nested intervals in a finite integer range

Our Data Structure

<- Pointer Map

Our Data Structure

<- Pointer Map

<- Bit Vector

Our Data Structure

https://www.shutterstock.com/search/dagger-silhouette

2-Modes of Action
Our data structure can be built
first, then preprocessed in O(n)
so that ‘stabbing’ is done in O(1)
…

Or it can be used online which
allows for stabbing queries to be
done in O(log n) time (binary
search)

This duality is possible because
of the nested structure of
LCP-intervals and the order of
their traversal

Preprocessed O(n) time

Online O(n log n) time

Iterate
LCP-intervals,

Build Data
Structure

Preprocess
Data Structure

Iterate
LCP-intervals,
and Encode

Grammar

Iterate LCP-intervals,
Building Data Structure and

Encoding Grammar

Encode
Start

Encode
Start

Our
Algorithm

(Optimal)

1) Iterate the LCP-intervals

Beller, Timo, Katharina Berger, and Enno Ohlebusch. "Space-efficient computation of maximal and supermaximal repeats in
genome sequences." International Symposium on String Processing and Information Retrieval. Springer, Berlin, Heidelberg, 2012.

AATCCTCATCGTCCATG …

CCATT Maximal?

1) Iterate the LCP-intervals

Beller, Timo, Katharina Berger, and Enno Ohlebusch. "Space-efficient computation of maximal and supermaximal repeats in
genome sequences." International Symposium on String Processing and Information Retrieval. Springer, Berlin, Heidelberg, 2012.

AATCCTCATCGTCCATG …

CCATT Maximal?

The iteration is done in
first length, then
lexicographic order

1) Iterate the LCP-intervals

Beller, Timo, Katharina Berger, and Enno Ohlebusch. "Space-efficient computation of maximal and supermaximal repeats in
genome sequences." International Symposium on String Processing and Information Retrieval. Springer, Berlin, Heidelberg, 2012.

AATCCTCATCGTCCATG …

CCATT Maximal?

NOTE: LCP-intervals
can be computed from
a variety of string data
structures, this one
uses an FM-index

2) Determine Maximality

AATCCTCATCGTCCATG …

CCATT Maximal?

3) Add to Stabbing Data Structure

AATCCTCATCGTCCATG …

CCATT Maximal?

T
B 0 1 0 1 0 1 0 1

↑ ↑ ↑ ↑

4) Repeat (Steps 1-3)

AATCCTCATCGTCCATG …

GGTTA Maximal?

T
B 0 1 0 1 0 1 0 1

↑ ↑ ↑ ↑

5) Process The Stabbing Data Structure

AATCCTCATCGTCCATG …

T
B 0 1 0 2 0 3 0 4

↑ ↑ ↑ ↑
Preporcess

6) Encode The Rules

AATCCTCATCGTCCATG …

T
B 0 1 0 2 0 3 0 4

↑ ↑ ↑ ↑

CCATT XTT Where X = CCA
(a previous rule)

found by
stabbing, that
prefixes the
current rule

Iterate and Stab

6) Encode The Rules

AATCCTCATCGTCCATG …

T
B 0 1 0 2 0 3 0 4

↑ ↑ ↑ ↑

CCATT
CFG

7) Repeat (step 6)

AATCCTCATCGTCCATG …

T
B 0 1 0 2 0 3 0 4

↑ ↑ ↑ ↑

GGTTA
CFG

8) Encode The Start Rule

AATCCTCATCGTCCATG …
Start

CFG

String

Our
Implementation

(and some results)

https://github.com/alancleary/cdawg-cfg

Conclusions

Our Algorithm . . .

● Compresses data into a CFG that is based on maximal repeats

● This can be done online or not, with time complexity of O(n log n) or O(n),
respectively

● We achieve this using a novel interval stabbing data structure to reduce
intermediate steps and data structures

Future Work

● Use the relation to other string data structures to port over functionality

● Better characterize and improve the compression ratio for our grammars

● Explore the opportunities for operating on compressed data

Funding and Acknowledgements

This work was
supported by NSF

Award Number
2105391

