Bit-Parallel (Compressed)
Wavelet Tree Construction

Patrick Johannes Florian Jan-Philipp
Dinklage Fischer Kurpicz Tarnowski
g%cr?rr%ijgge universitat ée;cr?:mijgge universitat *‘(IT crownpeak
rrrrrrrrrrrrrr itut fiir Technologie technische universitat

dortmund

Wavelet Trees

[wavelet tree }

Char Code
: 000
a 001
e 010
1 011
r 100
t 101
\Y 110

W 111

Wavelet Trees

level 1 [wavelet tree }

(most significant bits) 1910001011090 Char Code
: 000
a 001
e 010
1 011
r 100
t 101
\Y 110

W 111

Wavelet Trees

level 1 [wavelet tree }
(most significant bits) 1910001011090 Char Code
: 000
a 001
aele ee wvttr e 010
e
r 100
t 101
\Y 110

W 111

Wavelet Trees

level 1 [wavelet tree }
(most significant bits) 1910001011090 Char Code
_ 000
a 001
level 2 [aele ee J [wvttr } e 010
(second bits) 9111011 11000 1 011
r 100
t 101

level 3 a_ eleee ttr Y, Vv 110
(third bits) 10 01000 110 10 N 111

Wavelet Trees

level 1 [wavelet tree }
(most significant bits) 1910001011090 Char Code
_ 000
a 001
level 2 [aele ee J [wvttr } e 010
(second bits) 9111011 11000 1 011
r 100
t 101
level 3 a_ [eleee J[ttr J Y, Vv 110
(third bits) 10 01000 110 10 N 111

- [lg o Ilevels, n bits per level

Wavelet Trees

Char Code
level 1
(most significant bits) [101000101100 } _ 000
a 001
jovel 2 0111011 11000 S
(second bits) 1 011
r 100
t 1901
level 3 10 01000 110 10
(third bits) Y 110
W 111

> we only store the bits, text remains decodable

Wavelet Trees

level 1 Char Code
eve
(most significant bits) [101000101100 } _ 000
a 001
level 2 € 910
(second bits) 9111011 11000 1 011
r 100
level 3 t 1ol
(third bits) 16 01600 116 10 v 110

W 111

Wavelet Trees

level 1 Char Code
eve
(most significant bits) [101000101100 } _ 000
a 001
level 2 € 910
(second bits) 9111011 11000 1 011
r 100
level 3 t 1ol
(third bits) 16 01600 116 10 v 110
W 111

-> levelwise (pointerless) representation fits in [lg o I(n+o(n)) bits
(tree structure is retained implicity)

level 1

(most significant bits)

level 2
(second bits)

level 3
(third bits)

Wavelet Trees

Char
[101000101100 } B

a

e
[0111011 11000 } 1

p

t
[10 01000 110 10 } y

W

-> levelwise (pointerless) representation fits in [lg o I(n+o(n)) bits
(tree structure is retained implicity)

=> applications in compressed text indexing (e.g., FM-Index)

Code

000
001
010
011
100
101
110
111

10

Wavelet Tree Construction

Construction algorithm Time bound (seq.)

text book
prefix counting [D. et al., 2022] O(nlgo)

11

Wavelet Tree Construction

Construction algorithm Time bound (seq.)
text book
prefix counting [D. et al., 2022] O(nlgo)

[Babenko et al., 2014]

[Munro et al., 2014] O(nlgo/+/lgn
[Kaneta, 2018] (© / ¥)

12

Wavelet Tree Construction

Construction algorithm Time bound (seq.)
text book
prefix counting [D. et al., 2022] O(nlgo)

[Babenko et al., 2014]

[Munro et al., 2014] O(nlgo/+/lgn
[Kaneta, 2018] (© / ¥)

This work:
1. Does Kaneta’s algorithm scale with the register size (AVX-512)7?

13

Wavelet Tree Construction

Construction algorithm Time bound (seq.)
text book
prefix counting [D. et al., 2022] O(nlgo)

[Babenko et al., 2014]

[Munro et al., 2014] O(nlgo/+/lgn
[Kaneta, 2018] (© / ¥)

This work:
1. Does Kaneta’s algorithm scale with the register size (AVX-512)7?
2. Can it be adapted to build Huffman-shaped (compressed) wavelet trees?

14

Fast Levelwise Construction

(assuming a byte alphabet of size o =256)

B C D A

0100 0001 | 1010 0110 | 1101 0110 | 60011 11160

Fast Levelwise Construction

(assuming a byte alphabet of size o =256)

T =55 aas B C D S
0100 0001 | 1010 0110 | 1101 0110 | @011 1110

-> we build a 2%-ary levelwise wavelet tree (ex.: 7 =4)

[... B C D A }
0100 1@1@ 11@1 0011

- [lg o I/t levels

Fast Levelwise Construction

(we build a 2*-ary levelwise wavelet tree (ex.: 7=4))

[... B C D A]
0100 1@1@ 1191 0011

17

Fast Levelwise Construction

(we build a 2*-ary levelwise wavelet tree (ex.: 7=4))

[... B C D A J
0100 1@1@ 11@1 0011

\&) clusters of 7 levels of the (binary) wavelet tree

(array of z-bit blocks)

18

Fast Levelwise Construction

(we build a 2*-ary levelwise wavelet tree (ex.: 7=4))

[... B C D A]
0100 1@1@ 1191 0011

&) clusters of 7 levels of the (binary) wavelet tree

(array of z-bit blocks)

=> Grand strategy: expand a cluster to 7 bit vectors in time On)

19

Fast Levelwise Construction

(we build a 2*-ary levelwise wavelet tree (ex.: 7=4))

[... B C D A }
0100 1@1@ 11@1 0011

‘&) clusters of 7 levels of the (binary) wavelet tree

(array of z-bit blocks)

=> Grand strategy: expand a cluster to 7 bit vectors in time On)

-> then, for all [lg o Iz clusters, the total construction time becomes O(n Ig ¢/7)

(r == /Ign)

20

Fast Levelwise Construction

2a
2b

our steps for each cluster:

Step

Cluster Extraction

T passes

- Bit Extraction
- List Splitting
Text Reshuffling

Running time

O(n)

On©/lg n) = O(n)

O(n)

O(nt/lg n)
O(nt/lg n)

(7:

Vign)

21

Cluster Extraction

-> extract the relevant block of t bits from each character
to a word-packed list S

22

Cluster Extraction

-> extract the relevant block of t bits from each character
to a word-packed list S

B
0100 0001

C D A

J 1010 0110 | 1101 0110 | @011 1110

/////

...... 01600

1010

1101

@@11 ------

.

J

'
computer word (ex.: w= Q(lg n) = 16 bits)

23

Cluster Extraction

-> extract the relevant block of t bits from each character
to a word-packed list S

B
0100 0001

C D A

J 1010 0110 | 1101 0110 | @011 1110

/////

...... 01600

1010

1101

@@11 ------

.

J

'
computer word (ex.: w= Q(lg n) = 16 bits)

=> left-to-right scan of T'in time O(n) /

24

Fast Levelwise Construction

2a
2b

steps for each cluster:

Step

Cluster Extraction

T passes

- Bit Extraction
- List Splitting
Text Reshuffling

Running time

O(n)

On©/lg n) = O(n)

O(n)

O(nt/lg n)
O(nt/lg n)

(7:

Vign)

25

Word Packing

computer word (ex.: w= Q(lg n) = 16 bits)

AN
4 A

EEEEEE 0100 1101 | 0011 [+ * =+ >

=> we pack w/z blocks into a word / S consists of nz/w words

Word Packing

computer word (ex.: w= Q(lg n) = 16 bits)

-

~

S 0100

1101

0011

=> we pack w/z blocks into a word / S consists of nz/w words

=> if processing one word takes constant time,
then processing S takes time Omw/w)

27

Word Packing

computer word (ex.: w= Q(lg n) = 16 bits)

-

~

S 0100

1101

0011

=> we pack w/z blocks into a word / S consists of nz/w words

=> if processing one word takes constant time,
then processing S takes time Omw/w)

-> we will do 7 passes over §, each pass taking time O(nt/w) = O(nt/lg n)

28

Bit Extraction

computer word (ex.: w = 16 bits)

AN

-

~

0100

10160

1101

0011

29

Bit Extraction

computer word (ex.: w = 16 bits)

AN

-

N

0100

10160

1101

0011

1000

1000

1000

1000

-> the mask M marks what bits to
extract from a word

30

Bit Extraction

computer word (ex.: w = 16 bits)

AN
4 A
---- 0100 1101 | 0011
1000 | 1000 @ 1000 | 1000

-> the mask M marks what bits to
extract from a word

=> in pass ¢, we set the #-th bit
of each block

-> this gives us the bits for level ar+¢
of the wavelet tree

31

Bit Extraction

computer word (ex.: w = 16 bits)

AN
4 A
------ 0100 1101 | 0011
1000 1000 @ 1000 @ 1000
pext
...... 9110 |= = = = = =

-> the mask M marks what bits to
extract from a word

=> in pass ¢, we set the #-th bit
of each block

-> this gives us the bits for level ar+¢
of the wavelet tree

32

Bit Extraction

computer word (ex.: w = 16 bits)

AN
4 A
=+ 10100 1101 | 0011
1000 1000 @ 1000 @ 1000
pext
40110 |= = = = = =

-> the mask M marks what bits to
extract from a word

=> in pass ¢, we set the #-th bit
of each block

-> this gives us the bits for level ar+¢
of the wavelet tree

=> using lookup tables, this can be done in constant time per word
(in practice, we use the pext CPU instruction®)

33

Fast Levelwise Construction

2a
2b

steps for each cluster:

Step

Cluster Extraction

T passes

- Bit Extraction
- List Splitting
Text Reshuffling

Running time

O(n)

On©/lg n) = O(n)

O(n)

O(nt/lg n)
O(nt/lg n)

(7:

Vign)

34

List Splitting

recall how the text is “split” at a wavelet tree node

[wavelet tree }

101000101100
chars with a 0-bit chars with a 1-bit
are moved left are moved right
aele ee wvttr
HHHHHHH HHHHH

—> we need to simulate this on S after every pass

35

List Splitting

recall how the text is “split” at a wavelet tree node

[wavelet tree }

101000101100
chars with a 0-bit chars with a 1-bit
are moved left are moved right
aele ee wvttr
HHHHHHH HHHHH

- the border position equals the number of chars with a 0-bit

36

List Splitting

recall how the text is “split” at a wavelet tree node

[wavelet tree }

101000101100
chars with a 0-bit chars with a 1-bit
are moved left are moved right
aele ee wvttr
HHHHHHH HHHHH

- the border position equals the number of chars with a 0-bit

=> important: counting 0-bits must be done in constant time per word! (popcount) 37

List Splitting

computer word (ex.: w = 16 bits)

AN

-

N

0100

10160

1101

0011

0110

38

List Splitting

computer word (ex.: w = 16 bits)

AN

-

N

1 0100

1010

1101

0011

0000

1111

& o
o
o

~—
[&
§~~ Ll e L .
= —

0110

—> we expand the extracted bits to M/
(e.g., using lookup tables)

39

List Splitting

computer word (ex.: w = 16 bits)

AN

-

1 0100

1010

1101

\~~
-

-————_=----——

0110

—> we expand the extracted bits to M/

(e.g., using lookup tables)

1010

1101

40

List Splitting

computer word (ex.: w = 16 bits)

AN

-

1 0100

1010

1101

1 0100

0011

\~~
-

1010

1101

0110

—> we expand the extracted bits to M/

(flip bits for left child)

41

computer word (ex.: w = 16 bits)

AN

-

~

0100

1010

1101

0011

1111

0000

pex

0100

0011

0000

1111

List Splitting

0110

—> we expand the extracted bits to M/
(flip bits for left child)

1010

1101

=> using pext* twice, we do the desired splitting in constant time per word /

42

Fast Levelwise Construction

2a
2b

steps for each cluster:

Step

Cluster Extraction

T passes

- Bit Extraction
- List Splitting
Text Reshuffling

Running time

O(n)

On©/lg n) = O(n)

O(n)

O(nt/lg n)
O(nt/lg n)

(7:

Vign)

43

Text Reshuffling

recall how the text is “split” at a generalized wavelet tree node

[... B C D A]
0100 1@1@ 11@1 0011

44

Text Reshuffling

recall how the text is “split” at a generalized wavelet tree node

[... B C D A]
0100 1@1@ 11@1 0011

-> chars with bit pattern (v), are moved to the v-th child node

45

Text Reshuffling

recall how the text is “split” at a generalized wavelet tree node

[... B C D A]
0100 11@1 0011

-> chars with bit pattern (v), are moved to the v-th child node

=> we need to simulate this on T after finishing a cluster of 7 levels

=> this is essentially stable counting sort,

and the WT node borders are already known!
46

Fast Levelwise Construction

steps for each cluster:

Step Running time
K Cluster Extraction O(n)

2 | rpasses Ome/lgn) = Om) | (r:=+/1gn)
2a - Bit Extraction - O(nt/lg n)
'2b | - List Splitting - Ont/ig n)

| 3 Text Reshuffling O(n)

- for all [lg ¢ I/r clusters, the total construction time becomes O(n Ig /1)

47

Huffman-Shaped Wavelet Trees

[wavelet tree }

Char Code
3 0100
a 0101
e 00- -
1 0110
r 0111
t 10--
\Y 110-
W 111-

48

Huffman-Shaped Wavelet Trees

[wavelet tree }

101000101100
aele ree wvtt
10101100 1100
al r WV
0101 10

B8

=> build wavelet tree according to Huffman codes

Char Code

3 010
010

e 00 -

1 011

r 011

t 10-

Y 110

W 111

49

Huffman-Shaped Wavelet Trees

[wavelet tree }

101000101100
aele ree wvtt
10101100 1100
al r WV
0101 10

> gaps break (consecutive) levelwise representation

Char

=

Code

010
010
00-
011
011
10-
110
111

50

Huffman-Shaped Wavelet Trees

[wavelet tree }

000111101011 Char |Code

_ 000

[wav_r } [elettee } a 000
1010011 e 11-

1 100

r 011

t 101

a v 010
01 W 001

=> inverting canonical Huffman codes causes gaps to move to the right
(levelwise representation remains consecutive)

Fast Levelwise Construction
for Huffman-Shaped WTs

steps for each cluster:
Step Running time

Cluster Extraction O(n)

1a Code Length Computation O(n)

T passes O(n7/ign) = Om) | (r .= \/gn)
23 - Bit Extraction - Omtign)
2b - List Filtering -
2 _ List Splitting - O(mt/lgn)

Text Reshuffling O(n)

Code Length Computation

—=> store the remaining code length in the current cluster of each character
to a word-packed list L

B
1101 91--

C
1100 11--

D
1101 9---

A
0011 9---

53

Code Length Computation

—=> store the remaining code length in the current cluster of each character
to a word-packed list L

B
1101 91--

C
1100 11--

D
1101 9---

A
0011 9---

Y]
computer word (ex.: w = 16 bits)

-> we limit the lengths to 7 so they fit into 7 bits each

54

Code Length Computation

—=> store the remaining code length in the current cluster of each character
to a word-packed list L

------ B C D A = = = = om &
1101 01-- | 1100 11-- 1101 9--- 0011 9---
------ 2 1 1 " == omom o
H/_/

Y]
computer word (ex.: w = 16 bits)

-> we limit the lengths to 7 so they fit into 7 bits each
=> left-to-right scan of T'in time O(n)

55

Fast Levelwise Construction
for Huffman-Shaped WTs

steps for each cluster:
Step Running time

Cluster Extraction O(n)

1a Code Length Computation O(n)

T passes O(n7/ign) = Om) | (r .= \/gn)
23 - Bit Extraction - Omtign)
2b - List Filtering -
2 _ List Splitting - O(mt/lgn)

Text Reshuffling O(n)

List Filtering

computer word (ex.: w = 16 bits)

AN
N

57

computer word (ex.: w = 16 bits)

AN

List Filtering

~

t=1

t=1

t=1

t=1

=> in pass ¢, do a parallel greater-than
comparison of lengths against ¢

58

List Filtering

computer word (ex.: w = 16 bits)

AN

N

1

t=1

t=1

t=1

t=1

1111

1111

0000

0000

=> in pass ¢, do a parallel greater-than
comparison of lengths against ¢

=> the result mask M is used to filter codes ending on level az+t (pext)

=> the parallel comparison can be done in constant time per word

59

List Filtering

computer word (ex.: w = 16 bits)

AN

~

1

t=1

t=1

t=1

t=1

1111

1111

0000

0000

=> in pass ¢, do a parallel greater-than
comparison of lengths against ¢

=> the result mask M is used to filter codes ending on level az+t (pext)

=> the parallel comparison can be done in constant time per word

=> if any code ends after pass ¢, then all following codes also end

(thanks to the inverted canonical Huffman codes)

60

Fast Levelwise Construction
for Huffman-Shaped WTs

steps for each cluster:
Step Running time

Cluster Extraction O(n)

1a Code Length Computation O(n)

T passes O(n7/ign) = Om) | (r .= \/gn)
23 - Bit Extraction - Omtign)
2b - List Filtering ——
2 _ List Splitting - O(mt/lgn)

Text Reshuffling O(n)

Name
Population Count

Parallel Bit Extract

Parallel Compare

Compress

Bit Shuffle

Permute

Useful CPU Instructions

Instruction
popcnt
pext
pcmp*
vpcmp*

vpcompress*

vpshuftbit*

pshufb
vperm

Brief
Count # of 1-bits in input word

Extract bits from word marked by mask;
align in most significant bits

Compare vector components;
output bit vector containing results

Extract vector components
(“pext for words”)

Gather bits from 64-bit subwords
(“advanced pext”)

Permute vector components

-> See Intel® Intrinsics Guide for details!

CPUID Flags
POPCNT

BMI2

MMX
AVX512*

AVX512*

AVX512_BITALG

SSE3
AVX512_ BITALG

62

Experimental Results

Throughput [MiB/s] of Huffman-shaped \Wavelet Tree construction

600 -

400

200 -

dblp.xml dna

B ext64
B shuf64
I shuf128
B shuf256
W shuf512
B pc

english pitches proteins sources cc.16gib dna.16gib wiki.16gib

CPU: Intel Core i9-11900KF with AVX-512, 3.5GHz (no turbo), 384 KiB L1 O https://github.com/jptrn/mawt 63

